A Csound Algorithmic Composition Tutorial

Michael Gogins
11 August 2009

Introduction

This tutorial will teach you, step by step, how to do algorithmic composition
using Csound and the CsoundAC Python extension module for algorithmic
composition.

You should be prepared with some basic experience in music composition,
computer programming (even if it is only writing a few scripts or spreadsheets),
and software synthesis (preferably using Csound).

But above all, you need to have a strong curiosity about algorithmic
composition (also known as generative composition or score generation) from a
musical — not technical — point of view.

This section briefly introduces basic concepts and definitions, provides some
references to external resources for algorithmic composition, and presents a
series of historically based, tutorial compositions demonstrating basic techniques
of composing with algorithms. These pieces are:

B The Musikalisches Wuerfelspiel (musical dice game) of 1787 and variations

upon it (Chuang, 2007).

B Automatic generation of counterpoints to randomly generated cantus
firmi, based on the work of Lejaren Hiller (Hiller & Isaacson, 1959) and Bill
Schottstaedt (Schottstaedt, 1984).

m Transpositions of star positions and spectral data onto scores, based on
John Cage’s Atlas Eclipticalis (Cage, Atlas Eclipticalis, 1961).

M Sustained drones with beating combination and difference tones, inspired
by the work of LaMonte Young (Young, 2000).

m Fractal music, inspired by the work of Charles Dodge (Dodge, Viola Elegy,
1987).

B Minimalist music, based on the principles of Terry Riley’s In C (Riley,
2007).

All of these tutorial compositions use Python with the Csound AC module for
both composition and synthesis. All required Csound software, SoundFonts, and
instrument definitions are included. All soundfiles are rendered in stereo with
floating-point samples at 44,100 frames per second and 1 control sample per
audio sample frame, for high-resolution sound and high-precision performance.

The text provides detailed instructions that should enable you to create each
piece by writing code from scratch, but pre-written and tested versions of each
piece can also be found in the MusicProjects directory.

It is assumed that you are working on Windows XP, but similar steps would
obtain for Linux or OS X, except that at the time of writing, on OS X you would
first need to build Csound AC on your computer from Csound CVS sources.

What is Algorithmic Composition?
Let us begin at the beginning. What is an algorithm? What is composition?
The technical definition of algorithm is just: A definite procedure.

Definite simply means there are no ambiguous steps. Someone who does not
understand the field in the least can still perform the algorithm correctly, by
following directions one step at a time, and that is why computers can automate
the performance of algorithms. Definite is not at all the same thing as
deterministic. Flipping a coin produces a perfectly random sequence — but it is still
a perfectly definite procedure.

Examples of algorithms include cooking recipes, MapQuest directions, the
steps children are taught for doing long division or taking square roots, and all
computer programs.

Philosophers and mathematicians have proved that general-purpose
computers, such as your own personal computer, are universal in the sense that
they can perform any algorithm that any other particular computer can perform
(as long as they have enough time and enough memory), if necessary by running
a program that simulates the other sort of machine. Another term for universal is
Turing-complete. There probably are many ways of making a computer (or a
computer language, for that matter) Turing-complete; but in general, if a
computer or language implements all of a rather small set of basic instructions, it
is Turing-complete. These instructions include reading or writing a value to an
arbitrary memory address, interpreting such a value as an instruction and

carrying it out, performing the logical operations AND, OR, and NOT on such
values, and performing the instruction at one address if a logical expression is
true, but at another address if it is false (branching).

Philosophers and mathematicians also go further, and assume — and to date
there is absolutely no evidence to the contrary! — that anything at all that can be
computed, can be computed by a universal computer. The technical term for this
assumption is the Church-Turing thesis (Kleene, 1967). There is no known
counterexample to the thesis, and it is widely accepted, but it has never been
proved. The question of its truth has been a central question of philosophy since
the 1930s. Proof or disproof would revolutionize our understanding of logic,
mathematics, computer science, and even physics.

For a brilliant exposition of these things that cuts to the heart of the matter —

there are so infinitely many truths, that almost none of them can actually be
proved -- see (Chaitin, 1998).

What is composition?

Composition is the combination of distinct elements or parts to form a unified
whole; in this context, the art or act of composing a work of music.

Algorithmic composition, then, is the art or act of combining distinct elements
or parts to form a single unified work of music — using an algorithm.

Commonly, there is an implication that the algorithm is run on a computer,
which enables the composition of music that would be tedious or even
impossible to compose by hand. But running on a computer is not necessary to
the definition. The first algorithmic compositions far predate computers and so
were of course composed by hand, and algorithmic compositions are still being
composed by hand. An outstanding recent example of an algorithmically
composed piece produced completely by hand is Leonid Hrabovsky's Concerto
Misterioso (1993). It is of course also possible to generate scores by means of a
computer, but then print them out in music notation and play them, as Bruce
Jacob (2009) has done. But for the sake of speed and self-sufficiency, the
approach taken in this book is both to generate, and to render, scores using a
computer.

Philosophers and mathematicians have also proved that computers can't write
their own programs. Or rather, the proof goes: If computers do write programs,

they can’t always debug them. The technical term for this is the halting theorem
(Turing, 1936).

Actually it is possible for computers to write algorithms using evolutionary
programming, but so far at any rate, the problem domains suited to evolutionary
programming are rather small — extremely small, compared to the vast
possibilities of musical composition. In music, the fitness function would have to
be either a good algorithmic model of educated musical taste, a daunting
problem to say the least; or an actual panel of educated and discriminating
human listeners, perhaps an equally daunting prospect. (For an introduction to
the field see (Banzhaf, Nordin, Keller, & Francone, 1998); for an eye-opening
exploration of the creative possibilities of evolutionary programming, including
musical applications, see (Bentley & Corne, 2002); for an open-source Java
program that evolves graphical designs using various algorithms, see (Jourdan,
2004); for an introduction to genetic programming for musical composition, see
(Miranda & Biles, 2007).)

But the decisive point is that even the genetic algorithm still requires a
programmer to set up the algorithm and define a fitness function before it begins
to evolve solutions — so the setup as a whole is still a program that still needs to
be debugged, and that cannot always debug itself.

In short: Computers execute algorithms, programmers write them. Therefore
computers don't, and can't, do algorithmic composition. Only composers who
program do.

Now the interesting questions begin.

First, why bother? Composers already hear music in their heads, and write it
down. No need for computers or algorithms there.

But even the greatest composers have limited imaginations. Perhaps they can
imagine a work of music whole and write it down from memory, but that still
takes time, and even for the greatest composers, changes in style come slowly.
Perhaps the imagination depends upon unconscious templates that constrain the
possible elements and their combinations. Certainly the imagination can hold
only a limited number of elements in mind at the same time. Perhaps algorithms
could run much faster, or generate new templates and new styles as easily as
they generate pieces, or hold more elements together at the same time.

In other words, algorithms might offer, at least in principle, a means of transcending
some of the limitations of the human mind.

So, what kind of music can composers with computers compose, that
composers without computers can't?

Many thinkers have observed that music lends itself to mathematical
analysis, beginning with the definition of musical intervals as Pythagorean ratios.
For centuries, the rules of voice leading and harmony, and especially canonical
forms such as rounds and fugues, have been stated in the form of algorithms. So
music seems by its very nature to be suited to an algorithmic approach.

The differences between the human imagination and computer algorithms
further suggest that algorithms can be used to make works with more notes than
composers can keep track of; works with polymeters like 173/171; works where
each level of time has to perfectly mirror every other level of time; works that
specify a tiny grain of sound for each star in the sky; works where rhythmic
canons have to end together at precisely the same moment after hours of cycling;
scores based on mathematical evolutions that composers can't handle; and who
knows what....

Finally, the most important question of all: What is the best way to actually do
algorithmic composition?

For the art in algorithmic composition, of course, is writing only those
programs that will generate only that wonderful music, while leaving out all
boring, mediocre music and, of course, all plain old noise.

The possibilities include evolutionary computing, the use of parametric
algorithms controlled by only a few numbers that can rapidly be varied and even
mapped for interactive exploration, the reduction of music to simpler forms
either by analogy with Schenkerian analysis or in some mathematical form that
can be concisely controlled, and no doubt other possibilities that I haven't
thought of.

In all cases, the fact that the main advantage of the computer is sheer speed
lends great weight to every simplification and speedup of the composing process
itself. In my experience, good results in algorithmic composition come from
generating a great many pieces, and a great many variations on them, and
throwing almost everything away. So the algorithmic composer should learn to

program and compose quickly, and develop an efficient, flexible working
environment.

Facilities for Algorithmic Composition

Christopher Ariza maintains an excellent on-line list of references to facilities
for algorithmic composition (Ariza, 2007). There is no need for me to reproduce
all of his data here. However, I will mention some of the more interesting and
important open source or free software systems below (in alphabetical order, except
for Csound).

You should be aware that there also exists a surprising amount of commercial
software for algorithmic composition, ranging from what are basically toys to
quite serious and capable systems. Ariza's site mentions some of them as well.
Others can be found in music industry magazine articles and advertisements, or
at the Shareware Music Machine web site (Hitsquad, 2007).

It soon becomes apparent that there is an embarrassment of riches, and that
many algorithms are duplicated over and over again in different systems.
Furthermore, it is too often the case that some genius wrote a program decades
ago like Schottstaedt's species counterpoint generator (Schottstaedt, 1984) in
some weird language like SAIL that nobody can run anymore, so their work is
effectively lost. I find this situation quite frustrating, and would prefer a single
standard framework for which different musicians and developers could
contribute plugins. However, that would require widespread agreement on a
standard protocol for such plugins, not to mention a standard representation for
musical event data (MIDI, while a breakthrough and a useful standard, is not
sufficiently extensive or precise to represent all styles of music). Don't hold your
breath, but that is a future worth working for....

athenaCL

Christopher Ariza's own athenaCL (Ariza, athenaCL, 2007) is a pure Python
algorithmic composition environment. It can be used as a command shell, or as a
Python extension module. It includes a variety of algorithms from other sources,
notably OMDE/PMask (Puxeddu, 2004) which uses probabilistic “tendency
masks” to create clouds and sequences of sound grains and other events.
athenaCL also contains many ideas and algorithms from “musical set theory,”
son of serialism. athenaCL can use Csound for making sound.

blue

Steven Yi has written blue (Yi, 2007) as a Java-based composition
environment that also incorporates Python via the Jython module, which
implements the Python language using the Java virtual machine and thus
enables the complete inter-operability of Jython scripts and compiled Java
classes. blue contains a novel approach to computer composition in that it is very
concerned with the organization of time along multiple independent lines, and
attempts to use more traditional notions of orchestration and performance along
with other concepts. blue uses Csound for making sound.

Common Music

Common Music (Taube, 2007) is a LISP system for algorithmic composition
that is designed to produce MIDI sequences or Csound score files. It is one of the
deepest algorithmic composition systems and has been widely used. The author
of Common Music, composer Rick Taube, has written a book on algorithmic
composition (Taube H. K., 2004), in which all concepts are illustrated with
examples in Common Music.

JMusic

jMusic by Andrew Sorensen and Andrew Brown (Sorensen & Brown, 2007) is
a pure Java (and therefore cross-platform) framework for computer-assisted
composition in Java, and also can be used for generative music, instrument

building, interactive performance, and music analysis.

OpenMusic

OpenMusic (Agon, Assayag, & Bresson, 2007) is an object-oriented visual
programming environment based on CommonLisp/CLOS. OpenMusic provides
libraries and editors that make it a powerful environment for music composition

on Unix, Linux, and the Macintosh.

SuperCollider

SuperCollider by James McCartney (McCartney, 2007) (SuperCollider swiki,
2007) is a computer music system that is oriented towards live performance, but
it has many compositional algorithms and, since it contains a complete object-
oriented computer language with first-class functions and closures, is well suited
to algorithmic composition. Originally SuperCollider ran only on the Macintosh,
but it has been ported to Linux and now, partly to Windows as well.

SuperCollider actually consists of two parts, sclang the composition language,
and scsynth the synthesis server that makes the sound.

Csound

Although Csound (Vercoe, 2007) was designed primarily as a user-
programmable software synthesizer and sound processing language, it has over
the years gained sufficient facilities to be suitable for algorithmic composition.

The Score Language

Even the Csound score language contains some limited facilities for
algorithmic composition:

1. The carry feature can be used to increment pfields from one i statement to
the next. The related ramp, next pfield, and previous pfield operators also
can be used.

2. Score statements can evaluate arithmetic expressions.

3. The m (mark) statement can be used to symbolically identify a section of a
score.

4. The n and r (repeat) statements can be used to repeat symbolically
identified sections of scores.

5. The score macro facility can be used for various purposes. It includes the
#define, #define(...), #undef, and $ operators, which have
essentially the same meaning as they do in C.

6. The score #include statement can be used to construct a single score
from multiple files. Of course, the same file can be included more than

once.

Although these facilities are powerful, Csound's score language is not Turing-
complete, because it does not include an instruction for conditional branching.

The Orchestra Language

The Csound orchestra language, however, does include the if and goto
statements for conditional branching; therefore, the orchestra language is Turing-
complete.

The orchestra language includes opcodes for generating and scheduling score
events (event, scoreline, schedule, schedwhen, schedkwhen). The
orchestra language even has user-defined opcodes and subinstruments that can

be used as subroutines. Function tables can be used as arrays. The language has
its own #include statement and macro facility.

It follows that, in principle, the Csound orchestra language can be used to
generate any conceivable score. Unfortunately, most users find the Csound
language to be syntactically crude. It lacks blocks, lexical scoping, for loops,
classes, lambdas, and currying, to mention only some features of higher-level
languages that drastically increase programmer efficiency. It is not elegant in the
same sense that C, LISP, or Python are elegant, and it is not powerful in the same
sense that C++, OCaml, or Python are powerful.

CsoundAC as an Environment for Algorithmic Composition

CsoundAC (Gogins, 2007) is a Python extension module for Csound that is
specifically designed to support algorithmic composition. CsoundAC is included
in the Csound source code CVS archive, and is available ready to run in the
Windows installers for Csound.

As I have already indicated, Csound itself already provides some facilities for
algorithmic composition in its score language and, especially, its orchestra
language. CsoundAC goes much further, to provide not only a Python interface
to the Csound API, but also an extensive library of classes for generating and
transforming scores. This makes it very easy to write compositions in Python,
and to render the generated scores with Csound. You can embed Csound
orchestras right in your Python scripts, so all the elements of a composition can
be contained in a single file.

Python (Python Software Foundation, 2007) is an interpreted, dynamically
typed, object-oriented language, and it is definitely Turing-complete. Python is in
the Algol branch of the computer language family tree, with some features
borrowed from LISP. Most programmers who know several languages find that
Python is very “natural” and that they can write programs in Python quickly and
with few errors.

Because it is interpreted, Python does not execute quickly; it runs (very
roughly) about 1/30 as fast as C. However, on a contemporary computer, that is
more than fast enough for many purposes — certainly including score generation.

Yet this is just the beginning. Not only is Python an easy language to learn
and to use, and not only is it a powerful language in its own right, but also
Python is very easy to extend by writing modules in C, C++, or other languages.

If you are not familiar with Python, stop right here. Go to www.python.org,
find the Python Tutorial, and work through it.

Taking advantage of the extensibility of Python, CsoundAC includes a
number of additional Python modules for algorithmic composition and
synthesis: A class library for generating music graphs (Gogins, 1998); a number
of score generating nodes for music graphs, including translating images to
scores, chaotic dynamical systems, Lindenmayer systems, and iterated function
systems; and novel facilities for working with chords, voice-leadings, and chord
voicings, based on geometric music theory (Gogins, Score Generation in Voice-
Leading and Chord Spaces, 2006) (Tymoczko, 2006). CsoundAC's music graphs will
be used as the high-level structure for most of the algorithmic compositions in
this section, and are explained briefly in the next section.

Because the focus of this section is on algorithmic composition, we will use
the same Csound orchestra for most of the compositions
(MusicProjects/CsoundAC.csd). It is, however, a large orchestra with a
number of rather interesting instruments, many of them classic designs from the
history of computer music. You can make any number of arrangements of
instruments from this large orchestra by re-assigning instrument numbers in the
orchestra to the instrument numbers in the score.

Music Graphs

CsoundAC uses my concept of music graphs (Gogins, 1998) to create the high-
level structure of compositions.

Music graphs are to musical scores, as scene graphs are to 3-dimensional
scenes. Scene graphs are very widely used in computer graphics, and form the
mathematical basis for 3-dimensional modeling, computer game visuals,
computer animations, and so on. Basically, a scene graph draws from a
vocabulary of primitive objects, such as spheres, boxes, and cones. Each
primitive object is contained in a node that is associated with a local
transformation of coordinate system. A node can contain not only a primitive
object, but also a collection of any number of other nodes. Thus, a scene graph
consists of a directed acyclic graph (also known as a tree) of nodes.

When a scene graph is rendered, the renderer traverses the graph depth-first,
and at each node, the local transformation of coordinate system is multiplied by
the coordinate system inherited from its parent node, to produce a new
coordinate system. Or in other words, as the renderer traverses the scene graph,

http://www.python.org/

it uses the cumulative effect of all the transformations on each branch along the
tree to move the primitive objects at the leaf nodes around in space until they fit
together to compose the scene.

Mathematically, a transformation of coordinate system is just a matrix —
usually, a homogeneous affine transformation matrix. Such a matrix can translate
(move), and/or scale (stretch or shrink), and/or rotate a set of points (which
forms another matrix) on all dimensions at once with a single matrix

multiplication.

For example, a simple scene graph might consist of three spheres and a cone.
The root node might contain a sphere that expands to form a head, as well as
three child nodes: two nodes with smaller spheres that are shrunk and placed on
the upper front surface of the head to form eyes, and another node with a cone
that is shrunk and rotated to point forward and placed in the middle of the head
to form a nose. Once all the transformations are completed, the renderer shades
the scene and projects it onto a viewport to form a 2-dimensional rendering of
the 3-dimensional scene.

An important concept in scene graphs is reference. A node can be named, and
then used over and over again in different places in the graph. For example, a
node named “tree” might be used over and over again at different locations in
the scene to cover a hillside with a wood.

For a complete technical introduction to scene graphs, see (Foley, van Dam,
Feiner, & Hughes, 1997). For an open source program with a complete
implementation of scene graphs for modeling 3-dimensional images, see POV-
Ray (Persistence of Vision Pty. Ltd., 2007). In fact, you can think of CsoundAC as
being a sort of POV-Ray for scores.

In music graphs, there is only one primitive object, the event, which is
normally just a musical note. It is located not in 3-dimensional visual space, but
in a 12-dimensional music space. The dimensions are:

1. TIME, starting time of the event in seconds.
2. DURATION, duration of the event in seconds.

3. STATUS, corresponding to the high-order nybble of the MIDI status byte;
144 for a “note on” event.

4. INSTRUMENT, corresponding to MIDI channel, from 0 on up.

5. KEY, pitch in MIDI key number, middle C = 60.
6. VELOCITY, loudness in MIDI velocity, 80 = forte.

7. PHASE, in radians (allows events to represent coefficients of
time/frequency transforms).

8. PAN, -1 at left through 0 at center stage to +1 at right.
9. DEPTH, -1 at rear through 0 at center stage to +1 at front.
10. HEIGHT, -1 at bottom through 0 at center stage to +1 at top.

11. PITCHES, pitch-class set (i.e. note, interval, chord, or scale) to which this
event might be conformed, expressed as the sum of pitch-classes, which in
turn are expressed as C = 2 to the Oth power or 1, C#/Db = 2 to the 1st
power or 2, E =2 to 2nd power or 4, and so on.

12. HOMOGENEITY, 1 to make the event a homogeneous vector.

Nodes in music space can contain not only notes and other nodes, but also
scores, score generators, and various transforms or filters that act upon the notes
produced by child nodes.

For example, a music graph, at the lowest level, might use an A phrase in a
score node and a B phrase in a score node. At the next higher level, a node
named “tune” starts with A, follows it with A again, follows that with B
transposed up a perfect fourth, and ends with A again. At the highest level, a
node named “canon” contains one copy of “tune” followed by another copy of
“tune” two beats later.

More details of music graphs will be introduced as required to build the
compositions in this tutorial.

It should be noted that music graphs, as such, know nothing of traditional
music theory — quite in contrast to most composition software, which usually
tries to follow or model the rules of counterpoint, harmony, or serialism. This is
deliberate. My aim is to provide a general framework for organizing musical
events that is deaf to all rules of music theory. Such rules would predetermine
the styles possible to realize with the software.

Do not be mistaken: I am very far from indifferent to counterpoint, harmony,
serialism, or styles — but I think it is better if these choices are made on a higher
level of abstraction, as additional nodes of the system. For example, in the

following I will introduce a Counterpoint node based on Bill Schottstaedt's
work (Schottstaedt, 1984) for generating counterpoint over a cantus firmus.

Getting Started with Csound in Python

This section will get you started using Csound in Python, and provide a basic
pattern for generating scores and rendering them. First, we will embed a piece
into Python and render it. Next, we will generate a score using Python and
render it using the embedded orchestra.

Embedding Csound in Python
The Python interface to Csound consists of two Python extension modules:

1. csnd provides an object-oriented Python interface to the Csound API,
together with facilities for loading, saving, and manipulating Csound
orchestra and score files.

2. CsoundAC provides a Python interface to the music graph classes.
Basically, CsoundAC generates scores, and then uses csnd to render them.
CsoundAC also has convenience functions for all commonly used methods
of csnd.

If you have not already done so, install Python 2.6 (or whichever version is
current for Csound) from (Python Software Foundation, 2007) and Csound and
CsoundAC from (Vercoe, 2007).

Run Python from the command line. You should see something like this:

0 32 bit (Intel)] on wini2
e information.

Now, attempt to import CsoundAC. You should see something like this:

bit (Intell] an wir

Verity that CsoundAC has been imported correctly by entering
dir(CsoundAC):

If you like, you can view all of the classes, variables, and methods of
CsoundAC by entering help(CsoundAC).

In a text editor,’ enter the following script:
import CsoundAC

orchestra = ''"!'
Sr = 44100
ksmps = 100
nchnls = 2

instr 1

; Sharp attack, but not sharp enough to click.
iattack = 0.005

; Moderate decay.

idecay = 0.2

; Fast but gentle release.
irelease = 0.05

; Extend the total duration (p3) to include the attack,

release.
isustain = p3
p3 = iattack + idecay + isustain + irelease

; Exponential envelope.
kenvelope transeg 0.0, iattack, -3.0, 1.0, idecay, -3.0, 0.25,

-3.0, 0.25, irelease, -3.0, 0.0

decay, and

isustain,

; Translate MIDI key number to frequency in cycles per second.

ifrequency = cpsmidinn(p4)
; Translate MIDI velocity to amplitude.
iamplitude = ampdb (p5)
; Band-limited oscillator with integrated sawtooth wave.
aout vco2 iamplitude * kenvelope, ifrequency, 8
; Output stereo signal
outs aout, aout
endin
score = ''!

i10 10 68 80

command = 'csound -RWfo tootl.wav tootl.orc tootl.sco'

model = CsoundAC.MusicModel()
model.setCsoundOrchestra(orchestra)

" You can use the IDLE editor that comes with Python, or any other programmer’s editor

this section use SciTE.

such as EMACS, but I prefer to use SciTE (SciTE: A Free Text Editor for Win32 and X, 2007)
together with a Csound mode (solipse, 2007) . I prefer SciTE to IDLE because SciTE is easier to
stop and restart CsoundAC and Python in SciTE. I prefer SciTE to Emacs because SciTE conforms
to Windows user interface guidelines and is a lighter-weight application. All further examples in

model.setCsoundScoreHeader (score)
model.setCsoundCommand(command)

model.render ()

This is an extremely simple Csound piece. It plays an A440 sawtooth note for
10 seconds to a soundfile. It is also about the simplest possible way to create and
render this piece in Python. (You can find a pre-written version of this script in
MusicProjects\tootl.py.) Run the script with Python to render the piece:

& toot1.py - SCTE [6 of 6]

Fle Edi Search Yew Jools

Cptions

Lenguage Buffers

Help

SSEIES|

DFEHR (&5 2R X [0 = [Qa

1 wrfelspil py | 2 werfelspiel2.py | 3 celuar.py | 4 zodiacpy | Stactzpy Gtostlpy |

iiiii
] ; Sharp sttack, but not sharp emough te click
0.005

24
25 — acuc
26

27

31 score =
32 11010 68 80

cpsni dinn tpd)

22 ; Translate MIDT velocity to amplitude

[-python —u "tootl. py"

[EECAN CppSound: :perform(5, ODEFFD30)..

[BEGAN CppSound: :compile(S, DDEFFDIO). .

Loc ages ic disabled, using default language.

i1 16
e MIDT plugin for Csound

we audio medule for Csound

ard real time MIDT plugin for Csound
sz785.0

n 507 (double samples) Hov 8 2007

o module enabled ... using callback interface

at end of orchestra compile: real: 0.00ls, CPU: 0.000s

nd of score sort: real: 0.052s, CPU: 0.047s
07 [double samples) Nov & 2007

e blks of floats to toobl vav (WAV)

sEcTION 1:
BMDED CppSownd: :compile

hew alloc for instr 1:
E 0000 .. 5.000 T 5.000 TT 5.000 M: 6524.56 6524.6
E 5000 .. 10.000 T 10.255 TT 10.2S5 M 1647.7 1647.7
end of section 1 sect peak amps: 6524.6 6524.6
inactive allocs returned to freespace

SECTION 2

= 0000 .. s.000 T 5.000 TT 15.z54 1 0.0 o0
ena nz sect peak amps oo
sco d in csoundPerformKsups ()

ina: ned & ce

e ps: 6524.6 E524.6

real: 0.15s, CPU: 0.188s
written to tootl vaw [WAY)

line 9, column 30 (INS) (CR+LF) - 0 chars selected

Note the following;:

1. The Csound orchestra file, score file, and command line are embedded
into the Python script as Python variables. The multi-line orchestra and
score text are enclosed in Python’s triple quotes, which preserve all line

breaks and text formatting.

2. The script creates one instance, model, of the CsoundAC.MusicModel

class. This object manages a music graph (see above), and also contains an

instance of Csound.

3. The Csound orchestra, score, and command are sent to the Csound object

in the model using Python convenience functions.

1. The MusicModel.render () function does the following:

1. Traverse the music graph to generate a Csound score. The graph is
empty here, so no score is generated.

2. Add any Csound score text passed in wusing the
MusicModel.setCsoundScoreHeader () function to the front
of the generated score. The generated score is empty here, so the
score header becomes the entire score. It contains one note.

3. Parse out the orchestra and score filenames from the Csound
command, and save the Csound orchestra and generated score to
those files.

4. Execute the Csound command, to render the generated score using
the orchestra.

4. All Csound output messages are printed to the standard output, so they
show up in SciTE’s output pane, along with any Python output messages.

Generating Scores in Python

We will now change this simple exercise just enough to algorithmically
generate a score.

1. Import the string module at the top of the script:

2. Replace

import string
score = ''!
i10 10 68 80

with code that iterates the logistic equation, ; y = r y (1 — y); as the value of
r ncreases, iterating the equation will cause y to converge on a fixed point,
to oscillate in a repeating cycle, or to generate a never-ending sequence
called a “strange attractor” (Peitgen, Jurgens, & Saupe, 1992, pp. 585-653).
With each iteration, advance the time, but allow the notes to overlap by
half their duration. Map the value of y in the interval [0, 1] to the interval ,
[36, 96], which is a 5 octave range in terms of MIDI key numbers. Python
contains excellent facilities for passing a tuple of values, which can
include any type of data, to formatting specifications in a string; use this
to format a Csound 1 statement for each iteration of the equation. The
generated statements can simply be appended to a list, which can then be
joined to form a single string that is the Csound score. The value of r
chosen here generates a chaotic attractor.

r = 3.974

y = 0.5

time_ = 0.0
duration = 0.25

istatements = []
for 1 in xrange(1000):
y=r*y* (1.0 -vy)
time_ = time_ + duration / 2.0
midikey = int(36.0 + (y * 60.0))
istatement = "i 1 %f %f %d 80\n" % (time_, duration, midikey)
print istatement,
istatements.append(istatement)

score = string.join(istatements)

The entire script is then (you can find a pre-written version of this script in
MusicProjects\toot2.py):

import CsoundAC
import string

orchestra = ''!'
sr = 44100
ksmps = 100
nchnls = 2
instr 1
; Sharp attack, but not sharp enough to click.
iattack = 0.005
; Moderate decay.
idecay = 0.2

; Fast but gentle release.
irelease = 0.05
; Extend the total duration (p3) to include the attack, decay, and

release.
isustain = p3
p3 = jattack + idecay + isustain + irelease
; Exponential envelope.
kenvelope transeg 0.0, iattack, -3.0, 1.0, idecay, -3.0, 0.25, isustain,

-3.0, 0.25, irelease, -3.0, 0.0

; Translate MIDI key number to frequency in cycles per second.
ifrequency = cpsmidinn(p4)

; Translate MIDI velocity to amplitude.

iamplitude = ampdb (p5)
; Band-limited oscillator with integrated sawtooth wave.
aout vCco2 iamplitude * kenvelope, ifrequency, 8

; Output stereo signal
outs aout, aout
endin

r = 3.974

y = 0.5

time_ = 0.0
duration = 0.25

istatements = []
for i in xrange(1000):
y=r*y* (1.0 -vy)
time_ = time_ + duration / 2.0
midikey = int(36.0 + (y * 60.0))
istatement = "i 1 %f %f %d 80\n" % (time_, duration, midikey)
print istatement,
istatements.append(istatement)

score = string.join(istatements)
command = 'csound -RWfo toot2.wav toot2.orc toot2.sco'

model = CsoundAC.MusicModel()
model.setCsoundOrchestra(orchestra)
model.setCsoundScoreHeader (score)
model.setCsoundCommand(command)

model.render()
A Labor-Saving Pattern for Algorithmic Composition

The pattern that we have established in the previous example can be repeated
again and again to generate different pieces. In order to save work and ensure
consistency, it is worthwhile to establish a pattern that can be followed with only
slight variations in every composition:

1. At the top of the file, in triple quotes, put the title, author, and date of the
piece, together with any other explanatory comments you like. It is a
Python convention that such a string is a “docstring” that can be used for
automatically documenting code. In fact, print out the docstring at the
beginning of every performance.

2. In general, put in comments that explain what each section of the script is
doing; in fact, print these comments during the performance.

3. Import a number of the most useful Python modules.

4. Put in a section that automatically generates all filenames based off the
actual name of the script file. This enforces a consistent naming

convention, and removes any need for coming up with names for
soundfiles, Csound files, and so on.

5. Put in a section that defines alternative Csound commands for rendering
at various quality levels, or to real-time audio; the reader can select a
rendering option by changing the value of a rendering variable.

6. Put in a section to create all CsoundAC objects that may be used in the
piece at the top of the script, so that they will be in scope for the
remainder of the script.

7. Put the section for actually generating the score right after that, so it is
near the top of the script file and easy to find and edit. Often, this is the
only section that you need to edit in order to create a new piece.

8. Put in a section that embeds a powerful Csound orchestra that uses the
same set of pfields in all instrument definitions, and also has high-quality
effects and mixer busses (the creation of this orchestra is outside the scope
of this section; the orchestra used in the following is an adaption of the
one that I myself use).

9. Put in a section that enables the user to specify an arrangement of selected
instruments from the orchestra, and to customize the instrument numbers,
loudnesses, and pans of those instruments.

10. Put in a section to automatically render the generated score, and also
automatically save each generated score as a MIDI sequence file. MIDI
files take up next to no room, and can imported into notation software for
viewing in traditional music notation, or into a sequencer for rendering

with commercial software synthesizers.

11. End with a section that automatically plays the rendered soundfile, by
running Csound with an orchestra that simply reads the output soundfile
and renders it again to the real-time audio interface; this method of
playing a soundfile works on all operating systems on which Csound
itself runs.

Following this pattern ensures that a new piece can be written simply by
saving an existing piece to a new filename, changing only the score-generating
section of the code, and perhaps also the arrangement and Csound orchestra
sections. To illustrate this pattern, the preceding tutorial has been filled out
according to the suggested pattern in the following. The script has also been

modified to generate the score by appending events to a CsoundAC.ScoreNode
(here, the only node) in the music graph:

TUTORIAL COMPOSITION

Implemented by Michael Gogins

19 November 2007

This code is in the public domain.

print __doc__

print 'IMPORTING REQUIRED MODULES...'
print

import CsoundAC

import os

import random

import signal

import string

import sys

import traceback

print 'CREATING FILENAMES...'
print
scriptFilename = sys.argv[0]
print 'Full Python script: %s' % scriptFilename
title, exte = os.path.splitext(os.path.basename(scriptFilename))
print 'Base Python script: %s' % title
directory = os.path.dirname(scriptFilename)
if len(directory):
print 'Working directory: %s' % directory
os.chdir(directory)
print 'Working directory: %s' % directory
orcFilename = title + '.orc'
print 'Csound orchestra: %s' % orcFilename
scoFilename = title + '.sco'
print 'Csound score: %s' % scoFilename
midiFilename = title + '.mid'

print 'MIDI filename: %s' % midiFilename
soundfileName = title + '.wav'

print 'Soundfile name: %s' % soundfileName
dacName = 'dac'

print 'Audio output name: %s' % dacName

print

print 'SETTING RENDERING AND PLAYBACK OPTIONS...'

print

print 'Set "rendering" to: "cd", "preview" (default), or "audio".'
print 'Set "playback" to: True (default) or False.'

print

rendering = 'preview'

playback = True

print 'Rendering option: %s' % rendering
print 'Play after rendering: %s' % playback
commandsForRendering = {

'cd': 'csound -r 44100 -k 44100 -m3 -Rwzdfo %s %s %s' % (soundfileName,
orcFilename, scoFilename),

'preview': 'csound -r 44100 -k 100 -m3 -RwWzdfo %s %s %s' % (soundfileName,
orcFilename, scoFilename),

'audio': 'csound -r 44100 -k 100 -m3 -RWzZdfo %s %s %s' % (dacName,

orcFilename, scoFilename),
}
csoundCommand = commandsForRendering[rendering]
print 'Csound command line: %s' % csoundCommand
print

print 'CREATING GLOBAL OBJECTS...'
print

model = CsoundAC.MusicModel()
csound = model.getCppSound()
csound.setPythonMessageCallback()
score = model.getScore()

print 'CREATING MUSIC MODEL...'

print

scoreNode = CsoundAC.ScoreNode()
generatedScore = scoreNode.getScore()
model.addChild(scoreNode)

r = 3.974
y = 0.5
time_ = 0.0

duration = 0.25
istatements = []
for i in xrange(1000):
y=r*y=* (10 -vy)
time_ = time_ + duration / 2.0
midikey = float(36.0 + (y * 60.0))
generatedScore.append(time_, duration, 144.0, 1.0, midikey, 80.0)

print 'CREATING CSOUND ORCHESTRA...'
print
csoundOrchestra = \

sr = 44100

ksmps = 100

nchnls = 2
instr 1

; Sharp attack, but not sharp enough to click.
iattack = 0.005
; Moderate decay.

idecay

irelease

release.
isustain

p3

kenvelope
isustain,

ifrequency

iamplitude

aout

print
print

-3.0,

.25,

0.2
Fast but gentle release.
0.05
Extend the total duration (p3) to include the attack, decay, and

p3
iattack + idecay + isustain + irelease
Exponential envelope.

0.0,
-3.0, 0.0

transeg iattack,

irelease,

-3.0, 1.0, idecay, -3.0, 0.25,

; Translate MIDI key number to frequency in cycles per second.

cpsmidinn(p4)

; Translate MIDI velocity to amplitude.

14

vco2

4

outs

ampdb (p5)
Band-limited oscillator with integrated sawtooth wave.
jamplitude * kenvelope, ifrequency, 8
Output stereo signal

aout, aout

endin

'CREATING CSOUND ARRANGEMENT...'

model.setCsoundOrchestra(csoundOrchestra)

model.setCsoundCommand(csoundCommand)

print
print

model.render()

'RENDERING. . ."'

score.save(midiFilename)

if playback and (rendering != 'audio'):
print
print 'PLAYING OUTPUT SOUNDFILE...'

print

csound.setCommand('csound -0 %s temp.orc temp.sco' % dacName)

csound.setOrchestra(\

; Must be the same sr and nchnls as the soundfile.

44100
100
nchnls = 2

sr =

ksmps =

ifileseconds
p3

aleft, aright

instr 1

’

filelen

14

soundin
outs

Extend the note to the duration of the soundfile.
"%S n
ifileseconds
Simply play the soundfile to the output.
"%S n

aleft, aright

endin

"' % (soundfileName, soundfileName))
csound.setScore('i 1 1 1\n'")
csound.exportForPerformance()
csound.perform()

print 'FINISHED.'
print
This same pattern is followed in all remaining tutorials, but with more
elaborate orchestra and arrangement sections. You can find a pre-written version
of this script as MusicProjects\toot3.py.

Readers with programming experience are probably wondering why I broke
a cardinal rule of software engineering, and did not factor out redundant code
(e.g. for playing back soundfiles) into a separate module or modules that could
be shared by all the composition scripts. Normally this would indeed be the best
practice.

However, experience shows that in computer music, it is much wiser to keep
everything that is required to re-create a piece in the smallest possible number of
files — that is, in just one file. That means that in the future, I don’t have to worry
that some supporting module will have changed in such a way as to change the
sound of the piece when I go back five years later to render it again. I have lost
the ability to re-create some of my best pieces in this way! By duplicating all the
supporting code in each piece, including especially the entire Csound orchestra, I
can count on being able to re-create the piece exactly at any time.

An Historical Tutorial in Algorithmic Composition

Now that you have been introduced to CsoundAC's facilities for algorithmic
composition, let us illustrate them and put them to use by implementing a
variety of techniques for algorithmic composition.

The remainder of this section does not offer a complete or connected history
of algorithmic composition, but it does provide a series of tutorials that draw
from formative moments in the history of algorithmic composition. We will not
literally re-create all of these historical pieces, partly for reasons of copyright; but
we will use techniques borrowed from the original, classic pieces to create new
pieces. In the process, we will also create some Python classes that may prove
useful for further work in algorithmic composition.

For a brief introductory history of algorithmic composition, see (Roads, 1996).
For a somewhat more technical brief introduction, see (Loy, 1990). For a scholarly
history, see (Burns, 1993); for a recent overview, see (Nierhaus, 2009).

Mozart (?) and The Musical Dice Game

The Original Musikalisches Wuerfelspiel

This dice game for composing minuets was published anonymously in 1787
and is often attributed to Mozart, who is known to be the author of a slightly
later game that resembles part of this one. John Chuang's web site provides an
on-line version of this game, a freeware DOS implementation of it, a description
of it, and some historical material and links (Chuang, 2007).

The game consists of a set of measures of music, and two tables for specifying
how to choose measures for a piece by throwing a die. There is one table for
minuets, and another table for trios. For the minuet sections, the die is thrown
twice and the number from each throw is summed to provide the dice roll. For
the trio sections, the die is thrown once. Each table consists of one row for each
possible dice roll, and one column for each of the 16 bars in a section. Each cell in
the table contains the number of a precomposed measure of music in waltz time.
The bar numbers in the original tables suggest that a minuet of 16 bars is to be
followed by a trio of 16 bars. It would have been a common practice of the time
to repeat this sequence: minuet, trio, minuet, trio.

The algorithm works because each bar (or table column) contains a choice of
possible measures that each fit the same harmonic function, so the sequence of
columns inevitably forms a suitable harmonic progression for the galant style.

It is easy to program this game in Python using CsoundAC. The tables were
transcribed from the original by John Chuang, and the measures of music were
downloaded from his web site as short MIDI sequence files. They are used here
with his permission.

In Python, an object created with {key®: valueo, key1l:
valuel, ...} isa dictionary of keys that can be used to look up values. Each
of the two tables of measures can be done as a dictionary of dictionaries. First
you throw the die and use the dice roll as the key for the first dictionary, which
returns a second dictionary to which the key is the bar number, which returns
the number identifying an actual measure of music.

minuetTable = {}

minuetTable[2] = { 1: 96, 2: 22, 3:141, 4: 41, 5:105, 6:122,
9: 70, 10:121, 11: 26, 12: 9, 13:112, 14: 49, 15:109, 16: 14}
minuetTable[3] = { 1: 32, 2 6, 3:128, 4: 63, 5:146, 6: 46,
9:117, 10: 39, 11:126, 12: 56, 13:174, 14: 18, 15:116, 16: 83}
minuetTable[4] = { 1: 69, 2: 95, 3:158, 4: 13, 5:153, 6: 55,
9: 66, 10:139, 11: 15, 12:132, 13: 73, 14: 58, 15:145, 16: 79}
minuetTable[5] = { 1: 40, 2: 17, 3:113, 4: 85, 5:161, 6: 2,
9: 90, 10:176, 11: 7, 12: 34, 13: 67, 14:160, 15: 52, 16:170}
minuetTable[6] = { 1:148, 2: 74, 3:163, 4: 45, 5: 80, 6: 97,
9: 25, 10:143, 11: 64, 12:125, 13: 76, 14:136, 15: 1, 16: 93}
minuetTable[7] = { 1:104, 2:157, 3: 27, 4:167, 5:154, 6: 68,
9:138, 10: 71, 11:150, 12: 29, 13:101, 14:162, 15: 23, 16:151}
minuetTable[8] = { 1:152, 2: 60, 3:171, 4: 53, 5: 99, 6:133,
9: 16, 10:155, 11: 57, 12:175, 13: 43, 14:168, 15: 89, 16:172}
minuetTable[9] = { 1:119, 2: 84, 3:114, 4: 50, 5:140, 6: 86,
9:120, 10: 88, 11: 48, 12:166, 13: 51, 14:115, 15: 72, 16:111}
minuetTable[10] = { 1: 98, 2:142, 3: 42, 4:156, 5: 75, 6:129,
9: 65, 10: 77, 11: 19, 12: 82, 13:137, 14: 38, 15:149, 16: 8}
minuetTable[11] = { 1: 3, 2: 87, 3:165, 4: 61, 5:135, 6: 47,
9:102, 10: 4, 11: 31, 12:164, 13:144, 14: 59, 15:173, 16: 78}
minuetTable[12] = { 1: 54, 2:130, 3: 10, 4:103, 5: 28, 6: 37,
9: 35, 10: 20, 11:108, 12: 92, 13: 12, 14:124, 15: 44, 16:131}
trioTable = {}
trioTable[1] = {17: 72, 18: 6, 19: 59, 20: 25, 21: 81, 22: 41,
25: 36, 26: 5, 27: 46, 28: 79, 29: 30, 30: 95, 31: 19, 32: 66}
trioTable[2] = {17: 56, 18: 82, 19: 42, 20: 74, 21: 14, 22: 7,
25: 76, 26: 20, 27: 64, 28: 84, 29: 8, 30: 35, 31: 47, 32: 88}
trioTable[3] = {17: 75, 18: 39, 19: 54, 20: 1, 21: 65, 22: 43,
25: 9, 26: 34, 27: 93, 28: 48, 29: 69, 30: 58, 31: 90, 32: 21}
trioTable[4] = {17: 40, 18: 73, 19: 16, 20: 68, 21: 29, 22: 55,
25: 22, 26: 67, 27: 49, 28: 77, 29: 57, 30: 87, 31: 33, 32: 10}
trioTable[5] = {17: 83, 18: 3, 19: 28, 20: 53, 21: 37, 22: 17,
25: 63, 26: 85, 27: 32, 28: 96, 29: 12, 30: 23, 31: 50, 32: 91}
trioTable[6] = {17: 18, 18: 45, 19: 62, 20: 38, 21: 4, 22: 27,
25: 11, 26: 92, 27: 24, 28: 86, 29: 51, 30: 60, 31: 78, 32: 31}
Python has a random.randint(minimum,

23:

23:

23:

23:

23:

23:

11,

1134,

1110,

1159,

36,

1118,

: 21,

1169,

62,

1147,

1106,

89,

26,

15,

2,

44,

52,

24:

24:

24:

24:

24:

24:

30,

81,

24,

1100,

1107,

o1,

1127,

94,

1123,

33,

13,

71,

80,

61,

70,

94,

maximum) function that

returns a random integer in an inclusive range, which perfectly simulates one

throw of a die with any number of faces. The following function, in turn,

simulates any number of throws of such a die:

def rollDice(throws):

diceroll = 0
for i1 in range(throws):

diceroll += random.randint(1, 6)

return diceroll

CsoundAC can import MIDI files, so the measures are stored in individual
MIDI files and imported into CsoundAC. ScoreNode objects as required.

Note the line scoreNode.thisown =
for memory management. This means that whenever there are no more variables

0. Python uses a garbage collector

containing a reference to an object, that object is automatically deleted. In this

case, however, the Python object is only a “wrapper” around an underlying C++
object, which does not use garbage collection. The thisown attribute, if non-
zero, indicates to Python that the garbage collector can safely delete the object. If
0, the thisown attribute indicates to Python that the object should not be
garbage-collected. In this case, the newly created ScoreNode object is added as a
child to another node. This happens in C++, so Python loses track of the
reference. The result would be that after a short time, the ScoreNode would be
deleted — but the C++ code will still attempt to reference it. At that point, the
program will crash. Setting thisown to 0 prevents this. It is not necessary to set
thisown to 0 for CsoundAC objects that remain in global scope. All CsoundAC
objects will normally be deleted anyway by the model object, which is in global
scope, when it is destroyed by the garbage collector at the end of the run.

def readMeasure(section, number):
scoreNode = CsoundAC.ScoreNode()
scoreNode.thisown = 0
filename = section + str(number) + '.mid'
scoreNode.getScore().load(filename)
return scoreNode, filename

Because of the repeats, it is necessary first to generate the sequences of
measure numbers, and then to assemble the piece. The ScoreNode object, in
turn, is placed into a CsoundAC.Rescale node. The Rescale nodes arrange
the measures in the proper temporal sequence. The whole inner loop of the
program is as follows:

print 'Selecting random measures for minuet and trio by dice roll and bar
number...'

random.seed()
measuresChosen = {}
for bar in xrange(1, 17):
measuresChosen[bar] = minuetTable[rollDice(2)][bar]
for bar in xrange(17, 33):
measuresChosen[bar] = trioTable [rollDice(1)][bar]
print 'Assembling the selected measures with appropriate repeats...'
cumulativeTime = 0
for repeat in xrange(1, 3):
for barNumber in xrange(1, 17):
measure, filename = readMeasure('M', measuresChosen[barNumber])
notes = len(measure.getScore())
duration = measure.getScore().getDuration()

print 'Repeat %d: Minuet bar %d measure M%d %d notes at %f seconds' %
(repeat, barNumber, measuresChosen[barNumber], notes, cumulativeTime)

print measure.getScore().getCsoundScore()
cumulativeTime += duration

barTime = CsoundAC.Rescale()
barTime.setRescale(CsoundAC.Event.TIME, 1, 0, cumulativeTime, O)
barTime.setRescale(CsoundAC.Event.INSTRUMENT, 1, O, 1, 0)
barTime.setRescale(CsoundAC.Event.VELOCITY, 1, 1, 75, 5)
barTime.thisown=0
barTime.addChild(measure)
model.addChild(barTime)

for barNumber in xrange(17, 33):
measure, filename = readMeasure('T', measuresChosen[barNumber])
notes = len(measure.getScore())
duration = measure.getScore().getDuration()

print 'Repeat %d: Trio bar %d measure T%d %d notes at %f seconds' %
(repeat, barNumber, measuresChosen[barNumber], notes, cumulativeTime)

print measure.getScore().getCsoundScore()

cumulativeTime += duration

barTime = CsoundAC.Rescale()

barTime.setRescale(CsoundAC.Event.TIME, 1, O, cumulativeTime, O)
barTime.setRescale(CsoundAC.Event.INSTRUMENT, 1, O, 1, 0)
barTime.setRescale(CsoundAC.Event.VELOCITY, 1, 1, 75, 5)
barTime.thisown=0

barTime.addChild(measure)

model.addChild(barTime)

Create a Csound arrangement as follows. The CsoundAC.csd file
accompanying this tutorial contains a number of Csound instrument definitions
that all take the same set of pfields, and all output more or less the same volume
of sound. Open this file in a text editor. Select the contents of the
<CsInstruments> element, copy it, and paste it into your script, replacing the
text of the csoundOrchestra variable. Similarly, select the contents of the
<CsScore> element, copy it, and paste it into your script, replacing the text of
the csoundScoreHeader variable. Set the Csound command as you would for
the standard console version of Csound. This gives you a large orchestra with a
number of debugged instrument definitions, a mixer buss, and effects including
high-quality reverb.

Now, you can use the arrange function to select instrument definitions for

the arrangement.

print 'CREATING CSOUND ARRANGEMENT...'
print

model.setCsoundOrchestra(csoundOrchestra)
model.setCsoundScoreHeader (csoundScoreHeader)

oldinsno, newinso, level (+-dB), pan (-1.0 through +1.0)
model.arrange(1, 7, 0.0, -0.7)
model.arrange(2, 6, 0.0, 0.0)
model.arrange(3, 7, 0.0, +0.7)

model.setCsoundCommand(csoundCommand)

The script for the entire piece is now as follows (the orchestra and the score
header have been elided to save space):

TUTORIAL COMPOSITION BASED ON MUSIKALISCHES WUERFELSPIEL OF 1787
Implemented by Michael Gogins

6 November 2004 -- 13 October 2007
This code is in the public domain.
K

print __doc__

print 'IMPORTING REQUIRED MODULES...'
print

import CsoundAC

import os

import random

import signal

import string

import sys

import traceback

print 'CREATING FILENAMES...'
print
scriptFilename = sys.argv[0]

print 'Full Python script: %s' % scriptFilename
title, exte = os.path.splitext(os.path.basename(scriptFilename))
print 'Base Python script: %s' % title

directory = os.path.dirname(scriptFilename)
if len(directory):

print 'wWorking directory: %s' % directory
os.chdir(directory)
print 'Working directory: %s' % directory
orcFilename = title + '.orc'
print 'Csound orchestra: %s' % orcFilename
scoFilename = title + '.sco'
print 'Csound score: %s' % scoFilename
midiFilename = title + '.mid'
print 'MIDI filename: %s' % midiFilename
soundfileName = title + '.wav'
print 'Soundfile name: %s' % soundfileName
dacName = 'dac'
print 'Audio output name: %s' % dacName
print

print 'SETTING RENDERING AND PLAYBACK OPTIONS...'

print

print 'Set "rendering" to: "cd", "preview" (default), or "audio".'
print 'Set "playback" to: True (default) or False.'

print

rendering = 'preview'

playback = True

print
print

'Rendering option:
'Play after rendering:

commandsForRendering = {

%s' % rendering
%s' % playback

% (dacName,

11,

134,

110,

159,

36,

118,

21,

169,

62,

147,

106,

89,

26,

15,

8:

8:

8:

24:

24:

24:

30,

81,

24,

100,

107,

91,

127,

94,

1123,

33,

13,

71,

80,

'cd': 'csound -r 44100 -k 44100 -m3 -Rwzdfo %s %s %s' % (soundfileName,
orcFilename, scoFilename),
'preview': 'csound -r 44100 -k 100 -m3 -RwWzdfo %s %s %s' % (soundfileName,

orcFilename, scoFilename),

'audio': 'csound -r 44100 -k 100 -m3 -RwWzdfo %s %s %s'
orcFilename, scoFilename),
}
csoundCommand = commandsForRendering[rendering]
print 'Csound command line: %s' % csoundCommand
print
print 'CREATING GLOBAL OBJECTS...'
print
model = CsoundAC.MusicModel()
csound = model.getCppSound()
csound.setPythonMessageCallback()
score = model.getScore()
print 'CREATING MUSIC MODEL...'
print
minuetTable = {}
minuetTable[2] = { 1: 96, 2: 22, 3:141, 4: 41, 5:105, 6:122, 7:
9: 70, 10:121, 11: 26, 12: 9, 13:112, 14: 49, 15:109, 16: 14}
minuetTable[3] = { 1: 32, 2: 6, 3:128, 4: 63, 5:146, 6: 46, 7:
9:117, 10: 39, 11:126, 12: 56, 13:174, 14: 18, 15:116, 16: 83}
minuetTable[4] = { 1: 69, 2: 95, 3:158, 4: 13, 5:153, 6: 55, 7:
9: 66, 10:139, 11: 15, 12:132, 13: 73, 14: 58, 15:145, 16: 79}
minuetTable[5] = { 1: 40, 2: 17, 3:113, 4: 85, 5:161, 6: 2, 7:
9: 90, 10:176, 11: 7, 12: 34, 13: 67, 14:160, 15: 52, 16:170}
minuetTable[6] = { 1:148, 2: 74, 3:163, 4: 45, 5: 80, 6: 97, 7:
9: 25, 10:143, 11: 64, 12:125, 13: 76, 14:136, 15: 1, 16: 93}
minuetTable[7] = { 1:104, 2:157, 3: 27, 4:167, 5:154, ©6: 68, 7:
9:138, 10: 71, 11:150, 12: 29, 13:101, 14:162, 15: 23, 16:151}
minuetTable[8] = { 1:152, 2: 60, 3:171, 4: 53, 5: 99, 6:133, 7:
9: 16, 10:155, 11: 57, 12:175, 13: 43, 14:168, 15: 89, 16:172}
minuetTable[9] = { 1:119, 2: 84, 3:114, 4: 50, 5:140, 6: 86, 7:
9:120, 10: 88, 11: 48, 12:166, 13: 51, 14:115, 15: 72, 16:111}
minuetTable[10] = { 1: 98, 2:142, 3: 42, 4:156, 5: 75, 6:129, 7:
9: 65, 10: 77, 11: 19, 12: 82, 13:137, 14: 38, 15:149, 16: 8}
minuetTable[11] = { 1: 3, 2: 87, 3:165, 4: 61, 5:135, 6: 47, 7:
9:102, 10: 4, 11: 31, 12:164, 13:144, 14: 59, 15:173, 16: 78}
minuetTable[12] = { 1: 54, 2:130, 3: 10, 4:103, 5: 28, 6: 37, 7:
9: 35, 10: 20, 11:108, 12: 92, 13: 12, 14:124, 15: 44, 16:131}
trioTable = {}
trioTable[1] = {17: 72, 18: 6, 19: 59, 20: 25, 21: 81, 22: 41, 23:
25: 36, 26: 5, 27: 46, 28: 79, 29: 30, 30: 95, 31: 19, 32: 66}
trioTable[2] = {17: 56, 18: 82, 19: 42, 20: 74, 21: 14, 22: 7, 23:
25: 76, 26: 20, 27: 64, 28: 84, 29: 8, 30: 35, 31: 47, 32: 88}
trioTable[3] = {17: 75, 18: 39, 19: 54, 20: 1, 21: 65, 22: 43, 23:
25: 9, 26: 34, 27: 93, 28: 48, 29: 69, 30: 58, 31: 90, 32: 21}

trioTable[4] = {17: 40, 18: 73, 19: 16, 20: 68, 21: 29, 22: 55, 23: 2, 24: 61,
25: 22, 26: 67, 27: 49, 28: 77, 29: 57, 30: 87, 31: 33, 32: 10}

trioTable[5] = {17: 83, 18: 3, 19: 28, 20: 53, 21: 37, 22: 17, 23: 44, 24: 70,
25: 63, 26: 85, 27: 32, 28: 96, 29: 12, 30: 23, 31: 50, 32: 91}

trioTable[6] = {17: 18, 18: 45, 19: 62, 20: 38, 21: 4, 22: 27, 23: 52, 24: 94,
25: 11, 26: 92, 27: 24, 28: 86, 29: 51, 30: 60, 31: 78, 32: 31}

def readMeasure(section, number):
scoreNode = CsoundAC.ScoreNode()
scoreNode.thisown = 0@
filename = section + str(number) + '.mid'
scoreNode.getScore().load(filename)
return scoreNode, filename

def rollDice(throws):
diceroll = 0
for i in range(throws):
diceroll += random.randint(1, 6)
return diceroll

print 'Selecting random measures for minuet and trio by dice roll and bar
number...'

random.seed()
measuresChosen = {}
for bar in xrange(1, 17):
measuresChosen[bar] = minuetTable[rollDice(2)][bar]
for bar in xrange(17, 33):
measuresChosen[bar] = trioTable [rollDice(1)][bar]
print 'Assembling the selected measures with appropriate repeats...'
cumulativeTime = 0
for repeat in xrange(1, 3):
for barNumber in xrange(1, 17):
measure, filename = readMeasure('M', measuresChosen[barNumber])
notes = len(measure.getScore())
duration = measure.getScore().getDuration()

print 'Repeat %d: Minuet bar %d measure M%d %d notes at %f seconds' %
(repeat, barNumber, measuresChosen[barNumber], notes, cumulativeTime)

print measure.getScore().getCsoundScore()
cumulativeTime += duration
barTime = CsoundAC.Rescale()
barTime.setRescale(CsoundAC.Event.TIME, 1, 0, cumulativeTime, 0)
barTime.setRescale(CsoundAC.Event.INSTRUMENT, 1, O, 1, 0)
barTime.setRescale(CsoundAC.Event.VELOCITY, 1, 1, 75, 5)
barTime.thisown=0
barTime.addChild(measure)
model.addChild(barTime)

for barNumber in xrange(17, 33):
measure, filename = readMeasure('T', measuresChosen[barNumber])
notes = len(measure.getScore())
duration = measure.getScore().getDuration()

print 'Repeat %d: Trio bar %d measure T%d %d notes at %f seconds' %
(repeat, barNumber, measuresChosen[barNumber], notes, cumulativeTime)

print measure.getScore().getCsoundScore()

cumulativeTime += duration

barTime = CsoundAC.Rescale()

barTime.setRescale(CsoundAC.Event.TIME, 1, O, cumulativeTime, O)
barTime.setRescale(CsoundAC.Event.INSTRUMENT, 1, O, 1, 0)
barTime.setRescale(CsoundAC.Event.VELOCITY, 1, 1, 75, 5)
barTime.thisown=0

barTime.addChild(measure)

model.addChild(barTime)

print 'CREATING CSOUND ORCHESTRA...'
print

csoundCommand = 'csound -m3 -RwzZdfo %s %s %s' % (soundfileName, orcFilename,
scoFilename)

print 'Csound command line: %s' % csoundCommand
print

csoundOrchestra = \

; Csound orchestra goes here..

csoundScoreHeader = \

; Csound score header goes here..

print 'CREATING CSOUND ARRANGEMENT...'
print

model.setCsoundOrchestra(csoundOrchestra)
model.setCsoundScoreHeader (csoundScoreHeader)

oldinsno, newinso, level (+-dB), pan (-1.0 through +1.0)
model.arrange(1, 7, 0.0, -0.7)
model.arrange(2, 6, 0.0, 0.0)
model.arrange(3, 7, 0.0, +0.7)

model.setCsoundCommand(csoundCommand)

print 'RENDERING...'
print

model.render ()
score.save(midiFilename)

if playback and (rendering != 'audio'):
print
print 'PLAYING OUTPUT SOUNDFILE...'
print

csound.setCommand('csound -0 %s temp.orc temp.sco' % dacName)
csound.setOrchestra(\

; Must be the same sr and nchnls as the soundfile.

Ssr = 44100
ksmps = 100
nchnls = 2

instr 1

; Extend the note to the duration of the soundfile.
ifileseconds filelen "%s"
p3 = ifileseconds

; Simply play the soundfile to the output.
aleft, aright soundin "%s"

outs aleft, aright

endin

""" % (soundfileName, soundfileName))
csound.setScore('i 1 1 1\n'")
csound.exportForPerformance()
csound.perform()

print 'FINISHED.'
print

Rendering the Piece

You can find a pre-written version of the piece as
MusicProjects\01_DiceGame\wuerfelspiel.py. You can run the piece
either from the command line, or using IDLE, which comes with Python, or from
a text editor such as SciTE as previously discussed, or from the Windows
console.

The script must be run from the directory containing it, so that the relative
paths used to load the SoundFonts used by Csound instruments, and any
included Python modules, will all work. The piece should print out messages
about what it is doing and terminate, leaving a soundfile player running and
ready to play wuerfelspiel.py.wav.

Abstracting the Algorithm

The algorithm as presented completely captures the original musical dice
game. You could easily make a copy of the program and change the code to
make a different piece. However, this is not enough. It is not abstract enough.

In CsoundAQC, it is possible to define a Python class that derives from a C++
class with virtual functions, so that when a C++ base class pointer actually points
to an instance of a Python derived class (through a SWIG-generated director

object), calling the base class virtual C++ function invokes the Python overridden

function.

Therefore derive a Python class, DiceGameNode,

derived from

CsoundAC.Node, and put the musical dice game code into a

DiceGameNode.generate method, like this:

MUSIKALISCHES WUERFELSPIEL OF 1787 AS A NODE
Implemented by Michael Gogins

6 November 2004

This code is in the public domain

import CsoundAC

import random

Inherit Python DiceGameNode class
from CsoundAC.Node C++ class.

class DiceGameNode(CsoundAC.Node):
def __init_ (self):
print 'DiceGameNode.__init_ ()...'
CsoundAC.Node.__init__ (self)
self.minuetTable = {}
self.minuetTable[2] = { 1: 96, 2: 22, 3:141, 4: 41,

5:105, 6:122,

7: 11, 8: 30, 9: 70, 10:121, 11: 26, 12: 9, 13:112, 14: 49, 15:109, 16: 14}

self.minuetTable[3] = { 1: 32, 2: 6, 3:128, 4: 63,

5:146, 6: 46,

7:134, 8: 81, 9:117, 10: 39, 11:126, 12: 56, 13:174, 14: 18, 15:116, 16: 83}

self.minuetTable[4] = { 1: 69, 2: 95, 3:158, 4: 13,

5:153, 6: 55,

7:110, 8: 24, 9: 66, 10:139, 11: 15, 12:132, 13: 73, 14: 58, 15:145, 16: 79}

self.minuetTable[5] = { 1: 40, 2: 17, 3:113, 4: 85,

7:159, 8:100, 9: 90, 10:176, 11: 7, 12: 34, 13: 67, 14:160, 15:

self.minuetTable[6] = { 1:148, 2: 74, 3:163, 4: 45,

7: 36, 8:107, 9: 25, 10:143, 11: 64, 12:125, 13: 76, 14:136, 15:

self.minuetTable[7] = { 1:104, 2:157, 3: 27, 4:167,

7:118, 8: 91, 9:138, 10: 71, 11:150, 12: 29, 13:101, 14:162, 15:

self.minuetTable[8] = { 1:152, 2: 60, 3:171, 4: 53,

7: 21, 8:127, 9: 16, 10:155, 11: 57, 12:175, 13: 43, 14:168, 15:

self.minuetTable[9] = { 1:119, 2: 84, 3:114, 4: 50,

7:169, 8: 94, 9:120, 10: 88, 11: 48, 12:166, 13: 51, 14:115, 15:

self.minuetTable[10] = { 1: 98, 2:142, 3: 42, 4:156,

5:161, 6: 2,
52, 16:170}

5: 80, 6: 97,
1, 16: 93}

5:154, 6: 68,
23, 16:151}

5: 99, 6:133,
89, 16:172}

5:140, 6: 86,
72, 16:111}

5: 75, 6:129,

7: 62, 8:123, 9: 65, 10: 77, 11: 19, 12: 82, 13:137, 14: 38, 15:149, 16: 8}

self.minuetTable[11] = { 1: 3, 2: 87, 3:165, 4: 61,

5:135, 6: 47,

7:147, 8: 33, 9:102, 10: 4, 11: 31, 12:164, 13:144, 14: 59, 15:173, 16: 78}

self.minuetTable[12] = { 1: 54, 2:130, 3: 10, 4:103,
7:106, 8:

self.trioTable = {}
self.trioTable[1] = {17: 72, 18: 6, 19: 59, 20: 25,

5: 28, 6: 37,

5, 9: 35, 10: 20, 11:108, 12: 92, 13: 12, 14:124, 15: 44, 16:131}

21: 81, 22: 41,

23: 89, 24: 13, 25: 36, 26: 5, 27: 46, 28: 79, 29: 30, 30: 95, 31: 19, 32: 66}

self.trioTable[2] = {17: 56, 18: 82, 19: 42, 20: 74,

21: 14, 22: 7,

23: 26, 24: 71, 25: 76, 26: 20, 27: 64, 28: 84, 29: 8, 30: 35, 31: 47, 32: 88}

self.trioTable[3] = {17: 75, 18: 39, 19: 54, 20: 1, 21: 65, 22: 43,
23: 15, 24: 80, 25: 9, 26: 34, 27: 93, 28: 48, 29: 69, 30: 58, 31: 90, 32: 21}

self.trioTable[4] = {17: 40, 18: 73, 19: 16, 20: 68, 21: 29, 22: 55,
23: 2, 24: 61, 25: 22, 26: 67, 27: 49, 28: 77, 29: 57, 30: 87, 31: 33, 32: 10}

self.trioTable[5] = {17: 83, 18: 3, 19: 28, 20: 53, 21: 37, 22: 17,
23: 44, 24: 70, 25: 63, 26: 85, 27: 32, 28: 96, 29: 12, 30: 23, 31: 50, 32: 91}

self.trioTable[6] = {17: 18, 18: 45, 19: 62, 20: 38, 21: 4, 22: 27,
23: 52, 24: 94, 25: 11, 26: 92, 27: 24, 28: 86, 29: 51, 30: 60, 31: 78, 32: 31}

def readMeasure(self, section, number):
scoreNode = CsoundAC.ScoreNode()
scoreNode.thisown = @
filename = section + str(number) + '.mid'
print 'Reading: %s' % filename
scoreNode.getScore().load(filename)
return scoreNode, filename

def rollDice(self, throws):
diceroll = 0
for 1 in range(throws):
diceroll += random.randint(1, 6)
return diceroll

def generate(self):
print 'BEGAN generate...'

print 'First, select random measures for minuet and trio by dice roll and
bar number.'

random.seed()
measuresChosen = {}
for bar in xrange(1, 17):
measuresChosen[bar] = self.minuetTable[self.rollDice(2)][bar]
for bar in xrange(17, 33):
measuresChosen[bar] = self.trioTable [self.rollDice(1)][bar]
print 'Next, assemble the selected measures with appropriate repeats:'
cumulativeTime = 0
for repeat in xrange(1, 3):
for barNumber in xrange(1, 17):

measure, filename = self.readMeasure('M',
measuresChosen[barNumber])

notes = len(measure.getScore())
duration = measure.getScore().getDuration()

print 'Repeat %d: Minuet bar %d measure M%d %d notes at %f
seconds' % (repeat, barNumber, measuresChosen[barNumber], notes, cumulativeTime)

print measure.getScore().getCsoundScore()
cumulativeTime += duration
barTime = CsoundAC.Rescale()
barTime.setRescale(0, 1, ©, cumulativeTime, 0)
barTime.setRescale(5, 1, 1, 70, 10)
barTime.thisown=0
barTime.addChild(measure)
self.addChild(barTime)

for barNumber in xrange(17, 33):

measure, filename = self.readMeasure('T',
measuresChosen[barNumber])

notes = len(measure.getScore())
duration = measure.getScore().getDuration()

print 'Repeat %d: Trio bar %d measure T%d %d notes at %f
seconds' % (repeat, barNumber, measuresChosen[barNumber], notes, cumulativeTime)

print measure.getScore().getCsoundScore()
cumulativeTime += duration
barTime = CsoundAC.Rescale()
barTime.setRescale(0, 1, 0, cumulativeTime, 0)
barTime.setRescale(5, 1, 1, 70, 10)
barTime.thisown=0
barTime.addChild(measure)
self.addChild(barTime)

print 'ENDED generate.'

The reason for abstracting the dice game to a Node, of course, is that later on
you can use the musical dice game as a source of raw material for further
algorithmic transformations by other nodes in the music graph. Then, you can do
things like this:

print 'CREATING MUSIC MODEL...'
print

import DiceGameNode

model.setConformPitches(True)

diceGameNode = DiceGameNode.DiceGameNode ()
diceGameNode.generate()

rescale = CsoundAC.Rescale()
rescale.addChild(diceGameNode)

rescale.setRescale(CsoundAC.Event.PITCHES, 1, 0, CsoundAC.Conversions_nameToM('Bb
bebop'), 1)

model.addChild(rescale)

In this case, the music generated by the DiceGameNode is transposed from
its original key of D minor to a “Bb bebop” scale. It is not literally transposed, but
rather its pitch-classes are permuted. This is a very basic example of what is
possible. Multiple transformations of multiple copies and variations of the node
could easily be performed.

You can find a pre-written version of the piece as
MusicProjects/01_DiceGame/wuerfelspiel2.py. You can run the piece
either from the command line, or using IDLE, which comes with Python, or from
a text editor such as SciTE as previously discussed, or from the Windows
console.

The script must be run from the directory containing it, so that the relative
paths used to load the SoundFonts in the Csound instruments, and any included
Python modules, will all work. The piece should print out messages about what
it is doing and terminate, leaving a soundfile player running and ready to play
the output soundfile.

By the way, the story of the musical dice game does not end in the 18th
century! The measures of Mozart's game were used by John Cage and Lejaren
Hiller as source material for their algorithmically composed piece HPSCHD
(Cage & Hiller, 1969). And I use the 1787 measures again in a later section of this
section, as source material for a tutorial on using the minimalist technique of
cellular accretion in algorithmic composition.

Lejaren Hiller, Bill Schottstaedt, and Counterpoint
Generation

In 1959 Lejaren Hiller and Leonard Isaacson published a technical
monograph, Experimental Composition (Hiller & Isaacson, 1959), summarizing
the results of several years' research at the University of Illinois on composing
music with computer programs. This book is a founding text of algorithmic
composition (and indeed of computer music as such, since it predates by a year
or so Max Mathews' work at Bell Laboratories on synthesizing sound with
computer programs (Mathews, 1969)).

Hiller and Isaacson used information theory as the conceptual basis for their
work. Although information theory remains valid and relevant for computer
music, it is no longer the most important or most widely used basis for
algorithmic composition. Nevertheless, Experimental Composition is still
essential reading because of the deep thought its authors gave to fundamental
problems of algorithmic composition. All of the algorithms and approaches
invented in this book are still in use today.

Hiller and Isaacson worked with the Illiac I computer, a room-filling,
vacuum-tube beast somewhat less powerful than a programmable pocket
calculator is today. Still, even a programmable calculator can multiply quite a bit
faster than an unaided person!

The fruit of Hiller and Isaacson's researches is the Illiac Suite of 1957 (Hiller &
Isaacson, 1959a) for string quartet. They made this piece using a toolkit of
probabilistic, information-theoretic algorithms, with one master algorithm per
each of 4 “Experiments,” or movements, in the quartet, plus a “Coda.” To my

ears, the most fascinating part of the suite is “Experiment Two”, in which Hiller
and Isaacson began with randomly generated cantus firmi and used an algorithm
to compose four-part, first-species counterpoints to them. As the movement
progresses, I find it interesting in the extreme to hear the counterpoint become
increasingly refined with the addition of one of Fux's (Mann, 1971 [1943]) rules
after another to the algorithm, until the music becomes entirely smooth and

correct.

Hiller and Isaacson's book does not contain source code and if it did, it would
be in an obsolete language. In an effort to come up with a more modern
approach to counterpoint generation in the spirit of Hiller, I found Bill
Schottstaedt's report (and program) on Automatic Species Counterpoint
(Schottstaedt, 1984). The original program is also in a language nobody uses any
more, SAIL, but Schottstaedt has translated the algorithm to C, and he has
graciously given me permission to use his C code here.

I have used Schottstaedt's code to make a new CsoundAC.Node class,
CounterpointNode, which can extract a cantus firmus from a previously
generated score, and then generate a counterpoint to fit the cantus.

In adapting Schottstaedt's code, I made every effort to not change any of the
program logic at all, since I know from experience how easy it is to break
somebody else's code by modifying it, and how hard it is to figure out what went
wrong. I made one change at a time, and I tested the program after each change
to ensure that it continued to produce the same results. I changed Schottstaedt's
code as follows:

1. I changed the counterpoint generator from a set of C functions to a C++
class. This was done merely by enclosing all of Schottstaedt's original C
functions as member functions of a single Counterpoint C++ class.

2. I changed all symbolic constants in Schottstaedt's C code from #define
directives into C++ enum declarations. I changed those that needed to be
configurable (such as the maximum number of voices and notes) to int
member variables.

3. In particular, the original code used symbolic constants to specify the
numerical weights used to penalize breaking various rules of
counterpoint. I changed these numbers to member variables, so that the
user of the code could change the weights.

4. I changed all data storage for the cantus firmus, the generated
counterpoint, and intermediate results of calculations into dynamically
allocated C++ matrixes and vectors. Fortunately, Schottstaedt's original C
functions do not assume any fixed sizes for storage arrays.

5. Icreated two versions of the code based on the Counterpoint class, first
a stand-alone counterpoint program that generates a Csound score,
and then the CsoundAC.CounterpointNode version. The stand-alone
program made it easier to debug my changes and test the limits of the
algorithm.

6. The original code has a function named fux that is designed to produce a
counterpoint for a given cantus firmus, species, mode, number of voices,
and choice of beginning note in each voice. I wrote a new function,
Counterpoint::counterpoint, that follows the same logic:

void Counterpoint::counterpoint(int OurMode, int *StartPitches, int CurV, int
cantuslen, int Species, int *cantus)

{
initialize((cantuslen * 8) + 1, CurV + 1);
if(StartPitches)

{
for (int 1 = ©; 1 < CurV; i++)
{
vbs[i]

StartPitches[i];

}
int 1i;
for (i=1;i<=cantuslen;i++)
{
Ctrpt(i,0) = cantus[i-1];
}
for (1=0;i<3;i++)
{
Fits[i]=0;
}

AnySpecies(OurMode, &vbs[0], CurV, cantuslen, Species);

}

7. In the new CounterpointNode class, I was then able to write
CounterpointNode: :produceOrTransform to override the base class
Node: :produceOrTransform function as follows:

void CounterpointNode::produceOrTransform(Score &score, size_t beginAt, size_t
endAt, const ublas::matrix<double> &globalCoordinates)

{
// Make a local copy of the child notes.

Score source;

source.insert(source.begin(), score.begin() + beginAt, score.begin() + endAt);
System: :message("Original source notes: %d\n", source.size());

// Remove the child notes from the target.

score.erase(score.begin() + beginAt, score.begin() + endAt);

// Select the cantus firmus.

source.sort();

std: :vector<int> cantus;

std::vector<int> voicebeginnings(voices);

// Take notes in sequence, quantized on time, as the cantus.

// If there are chords, pick the best fitting note in the chord and discard
the others.

std::vector< std::vector<int> > chords;
double time = -1;
double o0ldTime = 0;
for (size_t i = ©; 1 < source.size(); i++)
{
oldTime = time;

time = std::floor((source[i].getTime() / secondsPerPulse) + 0.5) *
secondsPerPulse;

if (oldTime != time)
{
std: :vector<int> newchord;
chords.push_back(newchord);
}
chords.back().push_back(int(source[i].getKey()));
}
for(size_t i = 0, n = chords.size(); 1 < n; i++)
{
int bestfit = chords[i].front();
int oldDifference = 0;
for(size_t j = 1; j < chords[i].size(); j++)
{
int difference = std::abs(bestfit - chords[i][j]);
oldDifference = difference;
if (difference > 0 && difference < oldDifference)

{
bestfit = chords[i][j];

}
cantus.push_back(bestfit);

}
System: :message("Cantus firmus notes: %d\n", source.size());
if(voiceBeginnings.size() > 0)
{
voicebeginnings.resize(voices);
for (size_t i1 = 0; 1 < voices; i++)
{

voicebeginnings[i] = voiceBeginnings[i];

System: :message("Voice %d begins at key %d\n", (i + 1),
voicebeginnings[i]);

}

else

voicebeginnings.resize(voices);
int range = HighestSemitone - LowestSemitone;
int voicerange = range / (voices + 1);
System: :message("Cantus begins at key %d\n", cantus[0]);
int c¢ = cantus[0];
for (size_t i = 0; 1 < voices; i++)

{

voicebeginnings[i] = ¢ + ((1i + 1) * voicerange);

System: :message("Voice %d begins at key %d\n", (i + 1),
voicebeginnings[i]);

}
}
// Generate the counterpoint.

counterpoint(musicMode, &voicebeginnings[0@], voices, cantus.size(), species,
&cantus[0]);

// Translate the counterpoint back to a Score.
double duration = 0.;

double key = 0.;

double velocity = 70.;

double phase = 0.;

double x = 0.;
double y = 0.;
double z = 0.;
double pcs = 4095.0;

Score generated;
for(size_t voice = 0; voice <= voices; voice++)
{
double time = 0,
for(int note = 1; note <= TotalNotes[voice]; note++)
{
time = double(Onset(note,voice));
time *= secondsPerPulse;
duration = double(Dur(note,voice));
duration *= secondsPerPulse;
key = double(Ctrpt(note,voice));

// Set the exact pitch class so that something of the counterpoint
will be preserved if the tessitura is rescaled.

pcs = Conversions::midiToPitchClass(key);

System: :message("%f %f %f %f %f %f %f %f %f %f %f\n", time, duration,
double(144), double(voice), key, velocity, phase, X, y, z, pcs);

generated.append(time, duration, double(144), double(voice), Kkey,
velocity, phase, x, y, z, pcs);

}

}
// Get the right coordinate system going.

System: :message("Total notes in generated counterpoint: %d\n",
generated.size());

ublas::matrix<double> localCoordinates = getLocalCoordinates();
ublas::matrix<double> compositeCoordinates = getLocalCoordinates();
ublas: :axpy_prod(globalCoordinates, localCoordinates, compositeCoordinates);
Event e;
for (int 1 = ©, n = generated.size(); 1 < n; i++)
{
ublas::axpy_prod(compositeCoordinates, generated[i], e);
generated[i] = e;
}
// Put the generated counterpoint (back?) into the target score.
score.insert(score.end(), generated.begin(), generated.end());
// Free up memory that was used.
Counterpoint::clear();

}
Generating the Score

In “Experiment Two” of the Illiac Suite, randomly generated cantus firmi have
counterpoints generated for them algorithmically. As the music progresses, more
and more of Fux's rules are added to the counterpoint generator, until at the
conclusion of the piece the counterpoint sounds smooth and competent. Let us
write a piece of our own along these lines.

1. Write a Python function to generate a random cantus firmus of 8 whole
notes. The CsoundAC.Random node can easily do this. Place each
Random node inside a CsoundAC.Rescale node, and use it to conform
the randomly generated pitches to a named pitch-class set, in this case the
C major scale. Make sure that the first and last notes of each cantus are the
tonic of the scale.

randomNode = CsoundAC.Random()

print randomNode.minimum

print randomNode.maximum
randomNode.createDistribution("uniform_real")
now = int(time.time())

randomNode . seed(now)

cmajor = CsoundAC.Conversions_nameToM("C major")
wholeNote = 1.0

def createCantus(notes):
scoreNode = CsoundAC.ScoreNode()
scoreNode.thisown = 0
tonic = 36.0
event = None
for i in xrange(notes):

event = CsoundAC.Event()
event.thisown = 0@
event.setTime(float(1i))
event.setDuration(1.0)
event.setStatus(144)
event.setInstrument(1)
key = tonic + (randomNode.sample() * 12.0)
print 'key:', key
event.setKey(key)
Randomize the loudness a little.
event.setVelocity(70 + (randomNode.sample() * 8.0) - 4.0)
event.setPitches(cmajor)
event.conformToPitchClassSet()
Make sure it ends on the tonic.
if 1 == (notes - 1):

event.setKey(tonic)
scoreNode.getScore().append(event)

return scoreNode

2. Define a function to create a counterpoint node from a mode, species,
number of voices, and list of voice beginnings. It should create a
CsoundAC.CounterpointNode, assign the relevant properties, and set
the voice beginnings.

def createCounterpointNode(mode, species, voices, voicebeginnings):
counterpointNode = CsoundAC.CounterpointNode()
counterpointNode.thisown = 0
counterpointNode.LowestSemitone = int(24)
counterpointNode.HighestSemitone = int(108)
counterpointNode.musicMode = mode
counterpointNode.species = species
counterpointNode.voices = voices
counterpointNode.secondsPerPulse = 1.0 / 4.0

print 'Counterpoint : mode %d species %d voices %d' %
(counterpointNode.musicMode, counterpointNode.species, counterpointNode.voices)

for key in voicebeginnings:
counterpointNode.voiceBeginnings.append(int(key))
return counterpointNode

3. Define a function to create a section: take a music model, a note count, a
counterpoint node, a cumulative time pointer, the duration of a whole
note, and a transposition factor; generate a cantus with the specified
number of notes; add it to the counterpoint node; add the counterpoint
node to a rescale node; use the rescale node to move the counterpoint to
the appropriate point in time and the specified transposition; and return
the new value of the time pointer:

def createSection(model, notes, counterpoint, cumulativeTime, wholeNote,
transposition):

cantus = createCantus(notes)

print cantus.getScore().toString(),
counterpoint.addChild(cantus)

rescale = CsoundAC.Rescale()

rescale.thisown = 0

rescale.addChild(counterpoint)

football = wholeNote * 4.0 / counterpoint.secondsPerPulse

rescale.setRescale(CsoundAC.Event.TIME, True, False, float(cumulativeTime),
0.0)

rescale.setRescale(CsoundAC.Event.KEY, True, False, float(36 +
transposition), 0.0)

model.addChild(rescale)

cumulativeTime += (notes * wholeNote * 2.0)
print 'Cumulative time is:',6 cumulativeTime
print

return cumulativeTime

Generate 13 of these counterpoints. For the first one, set all of the basic
penalties in the CounterpointNode class to 0. For each successive
counterpoint, set many of the penalties back to their default values. For
the last 4 counterpoints, set all the weights back to their defaults. In the
last counterpoint but two, generate a 2nd species counterpoint. For the last
but one, generate 3rd species. For the very last, go back to 1st species.
Here is the first section:

cumulativeTime = 0.0
sections = 0

voices = int(3)

notes = int(8)

species = int(1)

voiceBeginnings = [57, 62, 69, 84, 98]

sections = sections + 1
print 'SECTION', sections

counterpoint = createCounterpointNode(CsoundAC.CounterpointNode.Ionian, species,
voices, voiceBeginnings)

counterpoint.UnisonPenalty = 0 # counterpoint.Bad;
counterpoint.DirectToFifthPenalty = 0 # counterpoint.RealBad;
counterpoint.DirectToOctavePenalty = 0 # counterpoint.RealBad;
counterpoint.ParallelFifthPenalty = 0 # counterpoint.infinity;
counterpoint.ParallelUnisonPenalty = 0 # counterpoint.infinity;
counterpoint.EndOnPerfectPenalty = 0 # counterpoint.infinity;
counterpoint.NoLeadingTonePenalty = 0 # counterpoint.infinity;
counterpoint.DissonancePenalty = 0 #
counterpoint.infinity;

counterpoint.OutOfRangePenalty = 0 # counterpoint.RealBad;
counterpoint.OutOfModePenalty = 0 # counterpoint.infinity;
counterpoint.TwoSkipsPenalty =0 # 1,
counterpoint.DirectMotionPenalty =0 # 1,
counterpoint.PerfectConsonancePenalty =0 # 2;

counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.

counterpoint.
counterpoint.

counterpoint.
counterpoint.
counterpoint.

counterpoint.
counterpoint.

counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.

counterpoint.
counterpoint.

counterpoint.
counterpoint.

counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.
counterpoint.

CompoundPenalty
TenthToOctavePenalty
SkipTo8vePenalty
SkipFromuUnisonPenalty

SkipPrecededBySameDirectionPenalty

FifthPrecededBySameDirectionPenalty

SixthPrecededBySameDirectionPenalty

SkipFollowedBySameDirectionPenalty

FifthFollowedBySameDirectionPenalty

SixthFollowedBySameDirectionPenalty

TwoSkipsNotInTriadPenalty
BadMelodyPenalty
ExtremeRangePenalty

LydianCadentialTritonePenalty

UpperNeighborPenalty
LowerNeighborPenalty
OverTwelfthPenalty
infinity;
OverOctavePenalty
SixthLeapPenalty
OctavelLeapPenalty

BadCadencePenalty
infinity;

DirectPerfectOnDownbeatPenalty

RepetitionOnUpbeatPenalty

DissonanceNotFillingThirdPenalty

UnisonDownbeatPenalty
TwoRepeatedNotesPenalty
ThreeRepeatedNotesPenalty
FourRepeatedNotesPenalty
LeapAtCadencePenalty
NotaCambiataPenalty
NotBestCadencePenalty
UnisonOnBeat4Penalty
NotaLigaturePenalty
LesserLigaturePenalty
UnresolvedLigaturePenalty
infinity;
NoTimeForaLigaturePenalty
infinity;
EighthJumpPenalty
HalfUntiedPenalty
UnisonUpbeatPenalty
MelodicBoredomPenalty
SkipToDownBeatPenalty
ThreeSkipsPenalty
DownBeatUnisonPenalty
VerticalTritonePenalty
MelodicTritonePenalty
AscendingSixthPenalty
RepeatedPitchPenalty

0 # 1;
0 # 8;
0 # 8;
0 # 4;
=0 # 1
0 # 3;
0 # 8,
=0 # 3;
0 # 8;
0 # 34;
=0 # 3
0 # counterpoint.infinity;
0 #5;
0 # 13;
0 # 1;
0 # 1,

0 # counterpoint.infinity;

= 0 # counterpoint.Bad;
= 0 # counterpoint.infinity;

0 # 3;
0 # 2;
=0 # 4;
0 # 7,
0 # 13;
0 # counterpoint.infinity;
0 # 8;
0 # 3;
0 # 21;
=0 # 8;
= 0 # counterpoint.Bad;
=0 # 13,
21;
1;
0 # 1,
=0 # 3;
O # counterpoint.Bad;
0 # 2;
0 # 8;
0 # 1;
0 # 1;

counterpoint.NotContraryToOthersPenalty =0 # 1,
counterpoint.NotTriadPenalty =0 # 34,
counterpoint.InnerVoicesInDirectToPerfectPenalty = 0 # 21;
counterpoint.InnerVoicesInDirectToTritonePenalty = 0 # 13;
counterpoint.SixFiveChordPenalty = 0 # counterpoint.infinity;
counterpoint.UnpreparedSixFivePenalty = 0 # counterpoint.Bad;
counterpoint.UnresolvedSixFivePenalty = 0 # counterpoint.Bad;
counterpoint.AugmentedIntervalPenalty = 0 # counterpoint.infinity;
counterpoint.ThirdDoubledPenalty =0 #5;
counterpoint.DoubledLeadingTonePenalty =
counterpoint.infinity;

counterpoint.DoubledSixthPenalty =0 #5;
counterpoint.DoubledFifthPenalty =0 # 3;
counterpoint.TripledBassPenalty =0 # 3;
counterpoint.UpperVoicesTooFarApartPenalty =0 # 1,
counterpoint.UnresolvedLeadingTonePenalty = 0 # counterpoint.infinity;
counterpoint.AllVoicesSkipPenalty =0 # 8,
counterpoint.DirectToTritonePenalty = 0 # counterpoint.Bad;
counterpoint.CrossBelowBassPenalty = 0 # counterpoint.infinity;
counterpoint.CrossAboveCantusPenalty = 0 # counterpoint.infinity;
counterpoint.NoMotionAgainstOctavePenalty =0 # 34;

cumulativeTime = createSection(model, notes, counterpoint, cumulativeTime,
wholeNote, 0) + 1.0

And here is the final section:

sections = sections + 1
print 'SECTION', sections
voices = int(3)

notes = int(8)

species = int(1)

counterpoint = createCounterpointNode(CsoundAC.CounterpointNode.Ionian, species,
voices, voiceBeginnings)

cumulativeTime = createSection(model, notes, counterpoint, cumulativeTime,
wholeNote, 0) + 1.0

Now create an arrangement to render the piece.

print 'CREATING CSOUND ARRANGEMENT...'

print

model.setCsoundOrchestra(csoundOrchestra)

model.setCsoundScoreHeader (csoundScoreHeader)

oldinsno, newinso, level (+-dB), pan (-1.0 through +1.0)
model.arrange(1, 13, 0.0, 0.0)

model.arrange(2, 6, 0.0, -0.7)

model.arrange(3, 6, 0.0, +0.7)

model.setCsoundCommand(csoundCommand)

Rendering the Piece

You can find a pre-written version of the piece as
MusicProjects\02_Counterpoint\counterpoint.py. You can run the
piece either from the command line, or using IDLE, which comes with Python, or
from a text editor such as SciTE as previously discussed, or from the Windows
console.

The script must be run from the directory containing it, so that the relative
paths used to load the SoundFonts in the Csound instruments, and any included
Python modules, will all work. The piece should print out messages about what
it is doing and terminate, leaving a soundfile player running and ready to play
counterpoint.py.wav.

This piece uses a great deal of time and memory, and it might even fail on
some computers. Some of the more demanding sections have been commented
out in the script, to make sure that it will run to the end. If you have a powerful
computer, you may wish to try un-commenting these sections to render the

entire piece..

I find that if Hiller's algorithm runs without any rules, the counterpoint is
generated at random pitches, whereas if Schottstaedt's algorithm runs without
any weights, the counterpoint is generated using a deterministic lookup table. As
the weights are added, the notes from the table are moved around. With most of
the weights in place, the Schottstaedt algorithm produces results that sound
quite similar to the Hiller algorithm, and the generated counterpoint sometimes
sounds completely finished. The program managed to generate good-sounding
2nd species counterpoint, but it gave up after the first few notes of 3rd species.

This and other experiments with the counterpoint program and the
CounterpointNode demonstrate the following results of interest:

1. The counterpoint generator can indeed generate correct-sounding
counterpoint — but only for relatively short cantus firmi. This is perhaps not
surprising, since the texts upon which the code is based universally use
examples of 10 or so whole notes. Also, Schottstaedt's algorithm involves
selecting a potential solution to the counterpoint, attempting to generate a
counterpoint that ends with a cadence, evaluating its fitness according to
weights for each rule and how badly it is broken, and then re-starting with
a different initial note if a good solution cannot be found, but saving prior
results on a stack for comparison. This recursive strategy is designed to

cut down the combinatorial explosion of paths to be searched, but it
cannot entirely eliminate the exponential nature of the problem, nor can it
guarantee a solution. Indeed, the rules of counterpoint themselves cannot
guarantee a solution for an arbitrary cantus firmus.

2. Consequently, although I have extended the potential duration of the
cantus firmus indefinitely, the longer the cantus is, and the higher the
species of counterpoint or the number of voices, the more likely the
generator is to fail. It fails in several different ways:

1. Because it is recursive, sometimes the search goes so deep that it uses
all available stack space or memory, causing the program to crash.

2. The generator sometimes fails to generate the upper voices of the
counterpoint, presumably because the search runs into a “brick wall” —
i.e., beginning with the initial note for a voice, none of the 12 possible
choices for the next voice leads to an acceptable solution.

3. The generator sometimes simply runs on and on. It is impossible to tell
if it is going in circles, or if the search time has exploded to an
impractical duration thanks to the combinatorial explosion of possible
routes to a cadence.

3. The texture of species counterpoint is pleasing, but only within a narrow
range. It does not produce anything like the gamut of rhythms and
textures that can be generated algorithmically in other ways, or that a
composer might wish to use in his or her music.

4. The algorithm takes no account of imitative techniques such as canon or
fugue, or serial techniques such as inversion and retrograde, which are
almost as important in music history as the techniques of voice leading.

In spite of these limitations, the algorithm has very real musical usefulness. It
can often generate pleasing counterpoints with correct voice leading for notated
or algorithmically generated cantus firmi ranging in length from 8 to 100 or so
notes. This might prove handy in a number of contexts.

The algorithm is also quite useful in demonstrating some important current
limitations of the imitative approach to algorithmic composition. In other words,
human thought is poorly understood and in some areas it is obviously much
more effective than current computer programs. In fact, using a computer to do
in a limited fashion what a trained human being can do extremely well may not

seem the wisest use of the computer itself, or of the computer programmer's
time.

But it is important to try, for in no other way will such limitations become
apparent. Refining the algorithmic imitation of human procedures is an
important part of the scientific aspect of algorithmic composition.

Some recent work in counterpoint generation has involved evolutionary
computing, but I have not seen any evidence that the results are more useful than
the examples here.

Cage and Transposition from Nature

John Cage changed music by composing without hearing music or, at least,
without pre-hearing it. He did this in many ways, but one of the notable pieces in
this vein is Atlas Eclipticalis for chamber ensemble (Cage, Atlas Eclipticalis, 1961).
Cage took a star atlas for the middle band of the sky — where the planets wander
and the constellations of the zodiac are found — and overlaid sections of this atlas
onto staff paper. He transcribed each star as a note of music. The brightness of
each star became the loudness of the note. Cage also added durations for the
notes and sections, and instructions for assigning them to players.

For a long time I was skeptical of the musical worth of such methods, but
after hearing the right musicians play Cage, I was astonished to find it as
compelling as any other music. In fact it has become a deep influence on my own
work. Cage's work proves that even if the polyphonic and harmonic techniques
of Western art music should fall into disuse, serious music will always have
many other fields in which to flower.

Most of Cage's music is not computer music — with the notable exception of
HPSCHD composed in collaboration with Lejaren Hiller (Cage & Hiller,
HPSCHD, 1969) — but, obviously, much of it has a distinctly algorithmic
component. Anyone can take a star chart and make a piece the same way Cage
did. And each piece will be different.

Cage's approach could be called “transposition of nature into music,” and
many pieces of modern and contemporary music have been made this way.

Yet one suspects that musical experience and taste must have a profound
influence on just how the whole procedure works out: from choosing particularly
interesting parts of the atlas, to making the cutouts the right size and proportion,

to laying them down just so on the staff paper, and so on, most especially not
forgetting the orchestration.

It is highly instructive to follow a similar procedure in CsoundAC.

Ours is a golden age of observational astronomy, and the amount of star
catalogues, images, and tables of data from terrestrial and extra-terrestrial
astronomical telescopes and other instruments is simply staggering. The Centre
de Donnees astronomiques de Strasbourg (CDS) (Centre de Donnees
astronomiques de Strasbourg, 2006) provides a central clearing house for this
data, and some Web services for accessing it. Anyone interested in astronomy
ought to know about this site. The services most relevant to the present purpose
are:

1. VizieR, a service for interactively querying a large number of astronomical
catalogues and returning the results to the local computer in various
forms.

2. Aladin, a Java applet or application for interactively querying
astronomical catalogues and images and viewing, plotting, or analyzing
the results.

Generating the Score

Here we shall make a piece inspired by Cage's Atlas Eclipticalis and following
a roughly similar procedure. We shall query CDS for lists of stars surrounding
the brightest star in each of the 13 zodiacal constellations, download the lists of
stars into delimited text files, and translate each of the brightest stars in the text
files into ScoreNodes that we will place in Rescale nodes and arrange by trial
and error to make a piece. In more detail the procedure is as follows:

1. Identify the 13 zodiacal constellations and the brightest star in each one:

Constellation Brightest star
Virgo Spica

Libra Alpha Libris
Scorpius Alpha Scorpii
Ophiuchus Rasalhague

Saggitarius Rukbat

Capricorn Alpha Capricornis

Aquarius Alpha Aquarii

Pisces Alpha Piscium

Aries Alpha Arietis

Taurus Aldebaran

Gemini Pollux

Cancer Alpha Cancri

Leo Regulus

2. For each of these stars, query the All-Sky Compiled Catalog of 2.5 Million

Stars catalog using the VizieR service to find all stars in a 1 degree box
centered on the star, and save the data to your disk as a tab-delimited text
file. Name the files Spica.tsv,Alpha_Libris.tsv, and so on.

3. Write a Python script to read the star data files, separate the fields, and
translate the field values as follows:

Astronomical datum Musical dimension

Right ascension Time

Declination MIDI key

Magnitude MIDI velocity and duration

Spectral class MIDI channel

4. Create a Python table of these data files and how to arrange them

(including arranging them in time, pitch range, and dynamic range), for
the script to read:

print 'CREATING MUSIC MODEL...'
print

print 'Specifying star catalogs to use...'

sections = []

0 1 2 3 4 5 6 7 8

Filename, start, duration, bass, range, softest, dynamic range, left, width
time = 0.

duration = 30.

sections.append(['Alpha_Piscium.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Alpha_Arietis.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Aldebaran.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Pollux.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Alpha_Cancri.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Spica.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Alpha_Libris.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Alpha_Scorpii.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Rasalhague.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Rukbat.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Alpha_Capricornis.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Alpha_Aquarii.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

time = time + duration + 4
duration = 30.

sections.append(['Regulus.tsv', time, duration, 36., 60., 60., 15.,
-.75, 1.5])

Also create a Python table for specifying the Csound instrument number
to assign to each spectral class:

instrumentsForSpectralTypes = {' ':0, '0':1, 'B':2, 'A':3, 'F':4, 'G':5, 'K':6,
'M':7}

6. Define a function to read a section of the star catalog table, and translate
the stars into notes. The function should create a CsoundAC.ScoreNode
to contain the notes. The function can read the file one line at a time,
skipping over all non-data lines (those beginning with - -). The data lines
consist of fields separated by tab characters, so it is easy to split each line
into fields and translate them into the fields of a musical note. Place each
translated ScoreNode into a Rescale node in order to position it as
specified by the section parameters. Then return the finished Rescale
node.
def readCatalog(section):

print 'SECTION', section
score = CsoundAC.ScoreNode()
score.thisown = 0
f = file(section[0])
Read the file until we run into '--'
which marks the last line of non-data.
while(True):

line = f.readline()

if string.find(line, '--') >= 0:

Read the file until done.

The fields we want are:
Right ascension

Visual magnitude

H O# #* H

1
Declination 2
8
9

Spectral type
while(True):
line = f.readline()
if not line:
break
fields = string.split(line, '\t')
if not len(fields) > 8:
break
print fields
time = float(fields[1])
key = float(fields[2])
velocity = float(fields[8])
pan = float(fields[6])
if(len(fields) > 9):
instrument = float(instrumentsForSpectralTypes[fields[9][0]])
else:
instrument = 8

score.getScore().append(time, velocity * 0.001, 144.0, instrument,
key, velocity, 0.0, pan)

print score.getScore().toString()
Put the section into a Rescale node to position it in the piece.
rescale = CsoundAC.Rescale()

rescale.thisown = 0
scoreTime = section[1]
scoreDuration = section[2]
shortest = 4.0
durationRange = 8.0

key = section[3]

range = section[4]

lowest = section[5]
dynamicRange = section[6]
leftmost = section[7]
width = section[8]

print 'time: ', scoreTime
print 'duration: ',scoreDuration
print 'shortest: ', shortest

print 'duration range:',6 durationRange

print 'key: ', key

print 'range: ', range

print 'lowest: ', lowest

print 'dynamic range: ', dynamicRange

print 'leftmost: ', leftmost

print 'width: ', width

print

rescale.setRescale(CsoundAC.Event.TIME, True, True, scoreTime,

scoreDuration)

rescale.setRescale(CsoundAC.Event.DURATION, True, True, shortest,
durationRange)

rescale.setRescale(CsoundAC.Event.KEY, True, True, key,
range)
rescale.setRescale(CsoundAC.Event.VELOCITY, True, True, lowest,
dynamicRange)
rescale.setRescale(CsoundAC.Event.PAN, True, True, leftmost,
width)

rescale.addChild(score)
return rescale

In the body of the script, assemble the sections into a single piece. Create a
master Rescale rescale node to hold the sections, and add it to the
model. For each section in the star catalog table, read the chart and add
the finished sub-score to the master rescale node. Then add the
rescale node to the music model.

print 'Assembling sections into a piece inside a master Rescale node...'
rescale = CsoundAC.Rescale()
model.addChild(rescale)
rescale.setRescale(CsoundAC.Event.DURATION, True, True, 6.0, 8.0)
rescale.setRescale(CsoundAC.Event.INSTRUMENT, True, True, 1.0, 7.0)
rescale.setRescale(CsoundAC.Event.VELOCITY, True, True, 57.0, 12.0)
for section in sections:

subscore = readCatalog(section)

rescale.addChild(subscore)

8. Now render the generated score using Csound. Use your musical
judgment to create an arrangement of 12 Csound instruments in the
orchestra. Here, I used SoundFont instruments (the fluid opcodes
require a separate instrument definition to actually collect and output the
sound; this is taken care of in the score header section).

print 'CREATING CSOUND ARRANGEMENT...'
print

model.setCsoundOrchestra(csoundOrchestra)
model.setCsoundScoreHeader (csoundScoreHeader)
oldinsno, newinso, level (+-dB), pan (-1.0 through +1.0)

model.arrange(O, 51)
model.arrange(1, 7))
model.arrange(2, 12)
model.arrange(3, 16)
model.arrange(4, 51)
model.arrange(5, 9)
model.arrange(6, 10)
model.arrange(7, 51)
model.arrange(8, 51)
model.arrange(9, 51)
model.arrange(10, 51)
model.arrange(11, 51)
model.arrange(12, 51)
model.arrange(13, 51)

model.setCsoundCommand(csoundCommand)
Rendering the Piece

You can find a pre-written version of the piece as
MusicProjects\03_Zodiac\zodiac.py. You can run the piece either from
the command line, or using IDLE, which comes with Python, or from a text
editor such as SciTE as previously discussed, or from the Windows console.

The script must be run from the directory containing it, so that the relative
paths used to load the SoundFonts in the Csound instruments, and any included
Python modules, will all work. The piece should print out messages about what
it is doing and terminate, leaving a soundfile player running and ready to play
zodiac.py.wav.

Test the piece by listening to it carefully, perhaps several times. If you are not
satisfied, go back to step 1 and change the order of sections, or their durations, or
ranges, instrument assignments, dynamic range, and so on, then re-generate the
piece.

I believe you will find that a few hours of the “generate and test” cycle
improves the music drastically, even though each individual decision might
seem to have little obvious or foreseeable musical effect. The exercise might
prove illuminating to some more traditionally-minded composers.

Although trial and error improves the music, it is instructive that the most
pleasing arrangement that I ended up with had each of the 13 segments rescaled
to exactly the same duration, range, and dynamic range. This seems to validate
Cage's trust of chance and natural pattern over human choice in some situations
— such an arrangement does not obscure the natural order with arbitrary human
re-arrangements.

Yet, I re-ordered the constellations to begin with Pisces instead of Virgo, so
that the densest and therefore loudest textures came about 3/4 of the way
through the piece, in the constellation of Sagittarius where the Zodiac passes
through the heart of the Milky Way, in line with the traditional arch form of
music. This was definitely more pleasing. Also, finding the most effective
duration for the total piece (tempo, density of texture) had a huge impact on the
quality of the music.

In my opinion, these compositional decisions do not so much re-arrange the

natural order, as serve to bring it into clearer focus.

LaMonte Young and Just Intonation

American composer LaMonte Young was a founder of the minimalist school.
In a radical break with Western musical tradition, and particularly with the then-
dominant serialist movement, the minimalists rejected key changes, the twelve-
tone method, the sonata and variation forms, regular meters, and much else to
focus on building music out of small, repeating elements that could interlock in
surprising ways. This was and is an essentially algorithmic approach to
composition.

At the very beginning, Young rejected not only all of the above, but even
melody and the equally tempered scale. Young focused, instead, and obsessively,
on long chords of notes tuned to just intonation according to very precisely
specified ratios of prime numbers (but avoiding ratios of 5 or divisible by 5,
which would produce intervals of a third or a sixth). In such chords, the partials
of the overtone series interlock to produce surprising combination and difference
tones that can form a sheen or scrim of virtual melodies and even counterpoints

not at all present in the individual tones of the chord (Young, 2000).

It is important to note that although pieces based on drones and pieces based
on interlocking cells may seem on the surface to be in very different styles,
beneath the surface they share the same idea: repeat a regular pattern against
another similar pattern of different duration. In the case of a drone, the regular
patterns are sine tones of different frequencies, i.e. whose cycles are of different
duration. In the case of something like Terry Riley’s In C (Riley, 2007), the regular
patterns are short musical motives, or cells, of different duration.

Young’s pieces of his early period were either free improvisations on the
chosen chord tones, or music consisting of the mere persistence of long loud
tones in a reverberant space. Young came to prefer stable electronic oscillators to
produce these tones, so this was electronic music.

Csound is, of course, ideally suited to produce this kind of music. Csound’s
oscillators are extremely precise, much more so than any electronic oscillator,
Csound can synthesize tones with varying degrees of harmonic content or
varying degrees of distortion, and Csound’s high-quality digital reverberation
can simulate many kinds of reverberant spaces.

The following piece generates 3 two minute drone chords in succession: a C
minor seventh chord, a G dominant seventh chord, and a C minor seventh chord
(all in just intonation, all without fifths, and all with septimal octaves (63/32)).

The chord tones are produced by the poscil3 opcode, a high-quality digital
oscillator, using a wavetable generated from the fundamental, 2™ partial and 5"
partial.

The chord tones are then modulated by the distort opcode, which uses a
wavetable that that is generated by a Chebyshev polynomial to produce a
distorted reflection of the signal waveform.

Finally, the waveshaped tones are globally reverberated by the high-quality
reverbsc opcode, which takes a feedback parameter that controls the
reverberation time.

In this style of music, which consists of only a few long sustained chords, it is
imperative to make certain that every detail of the production is exactly correct:
the frequencies of the notes, the timbres of the sound generators, and the quality
of the listening space.

To that end, it is very instructive to realize this piece in an interactive form.
The musician can then use sliders to fine-tune the harmonic content of the

oscillator, the amount of waveshaping, and the amount of reverberation while
the music is sounding. Small changes in these parameters turn out to have large
effects on the effect of the piece. When the user has adjusted the parameters to
his or her satisfaction, it should be possible to save the settings, restart the piece
from the beginning, and so on, so that many possible realizations of the basic
idea of the piece can be intensively explored in a short time. The user interface
for the piece should look something like this:

Dorone JRI=TEY

Ozcillator harmonic content Reverbzc
Wavetable harmonics multiplier Feedback [reverberation time]
0630 0917
W aveshaping distortion b aster gain
Diiztortion table multiplier Lewvel
1.296 0.750
Diigtartion gain
0.431 B
| | ||:Ia|:
Load |
Save |
Stop |

Csound contains its own user interface toolkit, in the form of the FLTK
opcodes, and it would quite possible to use the FLTK opcodes to realize this
piece. However, those who are familiar with graphical user interface
programming in other contexts may prefer to use a regular graphical user
interface toolkit, which I personally find more intuitive. Regular toolkits also
prove to be more powerful in the long run.

As it happens, Python comes with its own built-in graphical user interface
toolkit (actually, a toolkit in several parts: the Tkinter, Tix, ScrolledText,
and turtle modules). It is possible to make quite sophisticated graphical
applications with this toolkit. In fact, the IDLE development environment that
comes with Python is implemented with them. The user interface for this piece
uses only a fraction of the kit.

In an application like this piece, it is wisest to start with the Csound orchestra
and score, establish channels for the orchestra to communicate with the user
interface, and then implement the user interface.

Orchestra, Score, and Command

The orchestra and score for this piece can be quite simple. There only needs to
be one instrument, a simple wavetable oscillator with a very gradual envelope
and some waveshaping distortion. Run the instrument output to global
variables, run the global variables through more or less reverberation, and run
the final result out to the sound card. Use this instrument to play 3 two-minute
chords in just intonation. To achieve perfect just intonation, specify the pitch of
each note as a fundamental tone multiplied by a frequency ratio. As Young did,
use the omnipresent 60 cycle hum of our society as the fundamental tone. Also as
Young did, avoid intervals divisible by 5. Since the parameters to the opcodes
will need to be controlled from the user interface, declare them as global
variables in the orchestra header. Naturally, the Csound orchestra, score, and
command are defined as global variables in your Drone. py script:

csoundOrchestra = '''\
sr = 44100
ksmps = 100
nchnls = 2
0dbfs = 40000
gkDistortFactor init 1.0
gkReverbscFeedback init 0.9
gkMasterLevel init 1.0
gareverbl init
gareverb2 init
instr 1
iattack init 20
idecay init 20
p3 = p3 + (iattack + idecay) / 2.0
isustain = p3 - (iattack + idecay)
ifundamental = p4
inumerator = p5
idenominator = p6
ivelocity = p7
ipan = p8
iratio = inumerator / idenominator
ihertz = ifundamental * iratio

iamp = ampdb (ivelocity)

kenvelope transeg 0.0, iattack, 0.0, iamp, isustain, 0.0, iamp,
idecay, 0.0, 0.0
asignal poscil3 kenvelope, ihertz, 1
asignal distort asignal, gkDistortFactor, 2
gareverbl = gareverbl + aleft
gareverb2 = gareverbl + aright
endin
instr 30
aleft, aright reverbsc gareverbl, gareverb2, gkReverbscFeedback,
15000.0
aleft = gkMasterLevel * (gareverbl + aleft * 0.8)
aright = gkMasterLevel * (gareverb2 + aright * 0.8)
outs aleft, aright
gareverbl = 0]
gareverb2 = 0]
endin
EE
csoundScore = '''\
; A few harmonics...
f 1 0] 8193 10 3 0] 1 0 0] 2
; ...distorted by waveshaping.
f 2 0] 8193 13 1 1 0 3 0] 2
; Change the tempo, if you like.
t 0] 2
; p1 p2 p3 p4 p5 p6 p7
p8
; insno onset duration fundamental numerator denominator velocity
pan
7 Fundamental
i 1 (¢} 60 60 1 1 60
0.75
; Major whole tone
i 1 0 60 60 9 8 60
0.25
; Septimal octave
i 1 (¢} 60 60 63 32 60
0.00
; Fundamental
i 1 60 60 53.5546875 1 1 63
0.75
; Perfect fifth
i 1 60 60 53.5546875 3 2 62
0.25
; Harmonic seventh
i 1 60 60 53.5546875 7 4 61
0.00

’ Fundamental

i 1 120 60 60 1 1 60

0.75

; Major whole tone

i 1 120 60 60 9 8 60
0.25

; Septimal octave

i 1 120 60 60 63 32 60
0.875

; Septimal octave

i 1 120 60 60 32 63 60
0.125

i 30 0] -1

s 10.0

e 10.0

Tt

csoundCommand = ''"\

csound -0 %s temp.orc temp.sco

Real-time Control

How, then, to get the user interface to control the orchestra while it is

running?

By using the channel opcodes, which provide access to variables both from
inside the running Csound orchestra, and from external software using the
Csound API. All that is necessary is to bind each global variable to a control
channel that has the same name, using the chnexport opcode:

; Bind named control channels to global variables.

gkDistortFactor chnexport "gkDistortFactor", 3
gkDistortFactor init 1.0

gkReverbscFeedback chnexport "gkReverbscFeedback", 3
gkReverbscFeedback init 0.9

gkMasterLevel chnexport "gkMasterLevel", 3
gkMasterLevel init 1.0

Then a simple API call can set (or get) the value of any exported global variable
by name while the orchestra is running;:

def on_gkReverbscFeedback(self, value):
self.csound.SetChannel("gkReverbscFeedback", float(value))
self.configuration.gkReverbscFeedback = value

By using the CppSound.inputMessage API, which permits external
software to send any score statement to a running orchestra for instantaneous or
deferred execution. In this case, we will send new function tables to the orchestra

in order to change both the harmonic content of the oscillator, and the shape of
the waveshaping function:

def on_gkHarmonicTableFactor(self, value):
f = float(value)
self.configuration.gkHarmonicTableFactor = f
message = 'f 1 0 8193 10 3 0 %f 0 0 %f\n' % (f * 1.0, f * 2.0)
self.csound.inputMessage(message)

As it happens, with a fast computer, small enough wavetables, and a reasonable
kperiod such as 100, function tables can be replaced in a running orchestra
without causing any clicks or other noise. Of course, the message could also have
been a note, a tempo change, or any other score statement.

To simplify the code and reduce the number of variable names that need to be
remembered, in the following let us adopt a convention of using the name of the
global Csound variable not only for the name of its control channel, but also for
its associated Tkinter widget and widget callback.

User Interface

The most rudimentary possible Tkinter program in Python looks like this:

from Tkinter import *

class Application(Frame):
def __init_ (self, master=None):
Frame.__init__ (self, master)
self.pack()
self.label = Label(
self,
text = 'Hello, world!'

)
self.label.grid(row=0, column=0, sticky=N+E+W+S)

tk = Tk()
application = Application(master=tk)
application.mainloop()

Add an instance of Csound to this application. For this application, we do not
need CsoundAC; we can use the csnd module directly.

import csnd
from Tkinter import *

class Application(Frame):
def __init__ (self, master=None):
Frame.__init__ (self, master)
master.title('D R O N E')
self.pack()

self.csound = csnd.CppSound()
self.csound.setPythonMessageCallback()

Let us modify this program to add all the widgets shown in the previous
figure. We need to manage the layout of these widgets. In Tkinter, the easiest
way to do that is to use a grid layout, and to put groups of widgets inside forms
that are grouped inside larger forms, and so on. Here is the program with the
two columns of the layout and the first slider in each column.

class Application(Frame):
def __init_ (self, master=None):
Frame.__init__ (self, master)
master.title('D R O N E')
self.pack()

self.csound = csnd.CppSound()
self.csound.setPythonMessageCallback()
self.playing = False

self.configuration = Configuration()

self.leftFrame = Frame(self)
self.leftFrame.grid(row=r, column=c, sticky=N+E+W, padx=4, pady=4)

self.harmonicsFrame = Frame(
self.leftFrame,
bd = 2,
relief = 'groove'

)

self.harmonicsFrame.grid(row=r, column=c, sticky=N+E+W+S, padx=4, pady=4)

self.harmonicsLabel = Label(

self.harmonicsFrame,

text = 'Oscillator harmonic content'

)
self.harmonicsLabel.grid(row=r, column=c, sticky=N+E+W+S)
r=r +1

self.gkHarmonicTableFactor = Scale(
self.harmonicsFrame,
from_ = 0.0,
to = 2.0,
resolution = 0.001,
length = 250,
orient = HORIZONTAL,

label = 'wavetable harmonics multiplier',

command = self.on_gkHarmonicTableFactor

)
self.gkHarmonicTableFactor.grid(row=r, column=c, sticky=E+W)
r=r +1

self.rightFrame = Frame(self)
self.rightFrame.grid(row=r, column=c, sticky=N+E+W, padx=4, pady=4)

self.reverbFrame = Frame(
self.rightFrame,
bd = 2,
relief = 'groove'

)

self.reverbFrame.grid(row=r, column=c, sticky=N+E+W, padx=4, pady=4)

self.reverbLabel = Label(

self.reverbFrame,

text = 'Reverbsc'

)
self.reverbLabel.grid(row=r, column=c, sticky=E+W)
r=r+1

self.gkReverbscFeedback = Scale(
self.reverbFrame,
from_ = 0.0,
to = 0.9999,
resolution = 0.001,
length = 250,
orient = HORIZONTAL,
label = 'Feedback (reverberation time)',
command = self.on_gkReverbscFeedback

self?gkReverbscFeedback.grid(row=r, column=c, sticky=E+W)
r=r+1
Note that the various properties of each widget are passed to the widget
constructor as named arguments; this is a convention in Tkinter. Then set the
layout position using the grid function. You can simply increment the row
number, so that you don’t have to keep it straight in the code; reset the row
number to 0 when you start the second column.

Go ahead and add the other widgets. Each slider and button gets a callback.

def on_play(self):

def on_load(self):

def on_save(self):

def on_gkHarmonicTableFactor(self, value):
def on_gkDistortTableFactor(self, value):
def on_gkDistortFactor(self, value):

def on_gkReverbscFeedback(self, value):

def on_gkMasterLevel(self, value):
Implementing the Callbacks

Programs with graphical user interfaces are what is called event-driven. The
program just idles in circles (called the main loop) until the user does something
with a widget. Then the main loop catches an event from the widget and
dispatches it to the registered callback. All the actual work in such a program is
done in the widget callbacks. Thus, we write our program by implementing the
widget callbacks.

Begin with saving and restoring the run-time configuration. Use Python’s
facility for saving and restoring the contents of any Python object to or from a
file, which is called pickling. Gather all the real-time control variables into a
simple Python class named Configuration:

A class that contains all control channel configuration values,
in order to simplify saving and restoring configurations.
Naming convention:
Csound global variable name equals Csound control channel name,
equals Tkinter widget name, equals configuration variable name,
and the widget command handler name is the same but prefixed with "on_".
class Configuration(object):
def __init_ (self):

self.gkHarmonicTableFactor = 0.5

self.gkDistortTableFactor = 0.5

self.gkDistortFactor = 0.125

self.gkReverbscFeedback = 0.8

self.gkMasterLevel = 0.25

self.output = 'dac'

Add an instance of this class to your application:

self.configuration = Configuration()

Of course, you need a function to apply the values of the configuration
variables to your widgets when the configuration is restored. Note how using a
consistent naming convention makes the code easier to read.

Set initial control channel values.

def configure(self):
self.gkHarmonicTableFactor.set(self.configuration.gkHarmonicTableFactor)
self.gkDistortTableFactor.set(self.configuration.gkDistortTableFactor)
self.gkDistortFactor.set(self.configuration.gkDistortFactor)
self.gkReverbscFeedback.set(self.configuration.gkReverbscFeedback)
self.gkMasterLevel.set(self.configuration.gkMasterLevel)
self.outputStringvar.set(self.configuration.output)

The tkFileDialog module provides easy to use file dialogs. Use them in
the on_save and on_load callbacks to get filenames for opening files to pickle

and unpickle the configuration object:

def on_load(self):
try:

filename = tkFileDialog.askopenfilename(filetypes=[('Drone files',
"* pickled"), ("All files", "*")])

if filename:
picklefile = open(filename, 'rb')
self.configuration = pickle.load(picklefile)
picklefile.close()
self.configure()
print 'Loaded configuration: "%s".' % filename

except:
traceback.print_exc()

def on_save(self):
try:

filename = tkFileDialog.asksaveasfilename(filetypes=[('Drone files',
"* pickled"), ("All files", "*")])

if filename:
picklefile = open(filename, 'wb')
pickle.dump(self.configuration, picklefile)
picklefile.close()
print 'Saved configuration: "%s".' % filename
except:
traceback.print_exc()

The on_play callback will load the orchestra, score, and command into the

csound object, export the score and orchestra for performance, compile the
orchestra, and apply the initial configuration. Then — and this is very important —

when using the Tkinter toolkit,’ the application must take turns running the
Csound orchestra, and dispatching Tkinter events; this is done by calling the
Csound API CppSound.performKsmps(False), which runs one kperiod of
the Csound orchestra, followed by the Tkinter API Frame.update(), which
dispatches any pending widget callbacks, in a tight loop. The loop exits either
when the self.playing flag goes to False, or when performKsmps returns
True. Note that after compiling the orchestra, and before actually compiling, the
application sets the values of all the global variables in the Csound score to the
current values of the sliders on the user interface. When Csound has started
playing, set the label of the play button to Stop; when the user clicks on the
button again, set the self.playing flag to False so that the application will
exit the performance loop and shut down Csound, and set the label of the play
button back to Play.

Play if stopped,
and stop if playing.
def on_play(self):
if not self.playing:
self.playButton['text'] = 'Stop'
self.playing = True
try:
print 'Started playing...'
self.csound.setOrchestra(csoundOrchestra)
self.csound.setScore(csoundScore)
self.csound.setCommand(csoundCommand % self.outputStringvar.get())
self.csound.exportForPerformance()
self.csound.compile()

Apply initial control channel values before actually starting
synthesis.

f = self.configuration.gkHarmonicTableFactor

message = 'f 1 0 8193 10 3 0 %f © 0 %f\n' % (f * 1.0, f *
2.0)

self.csound.inputMessage(message)
f = self.configuration.gkDistortTableFactor

message = 'f 2 0 8193 13 1 %f © %f 0 %f\n' % (f * 1.0, f
*2.0, f*3.0)

self.csound.inputMessage(message)

self.csound.SetChannel("gkDistortFactor",
float(self.gkDistortFactor.get()))

self.csound.SetChannel("gkReverbscFeedback",
float(self.gkReverbscFeedback.get()))

* This is because Tkinter has trouble if other threads are started in a Tkinter application.
With other GUI toolkits, it is better to run Csound in a separate thread of execution, which is less
likely to be interrupted by GUI events, using the csnd.CsoundPerformanceThread class.

self.csound.SetChannel("gkMasterLevel",
float(self.gkMasterLevel.get()))

Tkinter only likes 1 thread per application.

So, we hack the rules and switch back and forth between
computing sound and handling GUI events.

When the user closes the application, self.update will raise

* = #

an exception because the application has been destroyed.
while self.playing and not self.csound.performKsmps(0):
try:
self.update()
except TclError:
traceback.print_exc()
self.playing = False
return
self.csound.stop()
except:
traceback.print_exc()
else:
try:
print 'Stopping...'
self.playButton['text'] = 'Play'
self.playing = False
except:
print traceback.print_exc()

There is one final trick in using Tkinter with Csound, and that is stopping

Csound from the user interface. If the user closes the application while Csound is

running, Tkinter destroys the application, but the performance loop will still
call the Tkinter update method. This causes a TCLError exception that you

must catch; in the exception handler you should simply set self.playing to

False to exit from the performance loop in the normal way.

To implement real-time orchestra control using control channels, do

something like this:

def on_gkDistortFactor(self, value):
self.csound.SetChannel("gkDistortFactor", float(value))
self.configuration.gkDistortFactor = value

def on_gkReverbscFeedback(self, value):
self.csound.SetChannel("gkReverbscFeedback", float(value))
self.configuration.gkReverbscFeedback = value

def on_gkMasterLevel(self, value):
self.csound.SetChannel("gkMasterLevel", float(value))
self.configuration.gkMasterLevel = value

To implement real-time orchestra control using run-time score messages, do

something like this:

def on_gkHarmonicTableFactor(self, value):
f = float(value)
self.configuration.gkHarmonicTableFactor = f
message = 'f 1 0O 8193 10 3 O %f 0 0 %f\n' % (f * 1.0, f * 2.0)
self.csound.inputMessage(message)

def on_gkDistortTableFactor(self, value):
f = float(value)
self.configuration.gkDistortTableFactor = f

message = 'f 2 0 8193 13 1 %f © %f © %f\n' % (f * 1.0, f * 2.0,
f * 3.0)

self.csound.inputMessage(message)
Rendering the Piece

You can find a pre-written version of the piece as
MusicProjects\04_Drone\drone.py. You can run the piece either from the
command line, or using IDLE, which comes with Python, or from a text editor
such as SciTE as previously discussed, or from the Windows console.

You can run the piece from your text editor, or by simply executing it with
Python. In either case, there are default values for the controls, so you can begin
the piece simply by clicking on the Play button. You should see Csound
messages in the output panel of your text editor, or in the Windows console, and
the sound should gradually get louder.

Experiment with changing various sliders. Save settings that you like under
different filenames. When you have found a configuration that you can’t seem to
improve, change the name of the output from dac to a soundfile name, click on
the Play button, and render the piece to a soundfile.

I suggest that you spend some time listening to various settings before
making up your mind about what works and what does not. You may find that
some initially appealing settings wear thin, whereas other settings that do not at
first sound compelling end up sounding better.

As a result of experimenting with different settings, I have concluded that
many of the shifting tones heard in some versions of this piece arise from
combinations and differences, not of the pure just intervals, but of nonlinear
distortions of them introduced by both the waveshaper and the reverberator.

This piece could be elaborated in many ways. It would probably be very
interesting to put in sliders to control the ratios of the just intonation intervals,
instead of setting them in the score. You could set up sliders to control the
individual variables in the Chebyshev polynomial, or the individual partials in

the oscillator wavetable. You could add a filter. You could put in buttons to
generate notes, or chords, at run time. You could use MIDI to play the
instrument. And so on....

Charles Dodge and Fractal Music

In 1987 Charles Dodge composed Viola Elegy for that instrument and
computer-generated tape (Dodge, 1987). The music was made using an
algorithm that computes a melody based on 1/f noise -- a random fractal -- and
then on top of each note of that melody, recursively computes another shorter
melody based on 1/f noise, and so on for several layers. Dodge then arranged
the music by doubling the computer parts on viola, ending with a candenza for
viola solo. It is a moody and affecting piece.

In an article (Dodge, Profile: A Musical Fractal, 1998), Dodge explains this
procedure as a variation on the Koch snowflake curve. In the Koch snowflake,
each segment of a hexagon is inscribed with a “generator,” a triangle sitting in
the middle third of a line segment. Then, each segment of the resulting curve is
inscribed with a smaller copy of the generator, and so on ad infinitum.

Generating the Score
A similar procedure can be used to generate a score, as follows.

1. Define the generator as a set of movements in time, pitch, and loudness: a
factor to lengthen or shorten duration, half-steps to add to pitch, and
decibels to add to loudness. Each point in the generator can be a 3 element
Python list. The complete generator can be a list of points.

generator = [
[1.500, 3, 1],
[1.250, 9, 2],
[1.000, 11, 3],
[1.375, 4, 1],
1

2. Define a function to normalize the duration factors in a generator.

def normalize(notes, dimension):
print 'Normalize dimension', dimension
total = 0.0
for note in notes:
total = total + note[dimension]
factor = 1.0 / total
for note in notes:

note[dimension] = note[dimension] * factor
print note[dimension]

Define a recursive function that applies the generator to each point in a
normalized generator, and then translates each point into a note that is
stored in a score. In addition to the generator, the function will take a
time, duration, and pitch at which to place the generator, and a score in
which to place generated notes. When the level of recursion reaches the

bottom, return without recursing further.

print 'CREATING MUSIC MODEL...'
print

A recursive function for generating a score

in the form of a Koch curve.

Each note in a generating motive

will get a smaller copy of the motive nested atop it,
and so on.

def generate(score, notes, levels, level, time, duration, key, velocity):
locallLevel = level
localTime = time
localPan = ((float(localLevel) / float(levels)) - 1.0) *.75
localvelocity = velocity
for note in notes:
localDuration = note[0] * duration
localKey = key + note[1]
localvVelocity = localVelocity - (note[2] * 0.35)

print 'Adding note: level %3d of %3d time %7.3f duration %7.3f key %3d
velocity %3d pan %7.3f' % ((localLevel + 1), levels, localTime, localDuration,
localKey, localvelocity, localPan)

score.append(localTime, localDuration, 144.0, locallLevel + 1, localKey,
localvelocity, 0, localPan)

if locallLevel > 0:

generate(score, notes, levels, (locallLevel - 1), localTime,
localDuration, localKey, localVelocity)

localTime = localTime + localDuration
Generate a composition: define a generator that assigns each level of
recursion to a different Csound instrument (a sustained instrument for the
slowest, lowest level of structure, a more percussive sound for the faster,
higher levels of structure), normalize your generator, and call the
generation function. The entire score generation section is then:

print 'CREATING MUSIC MODEL...'
print

A recursive function for generating a score
in the form of a Koch curve.
Each note in a generating motive

will get a smaller copy of the motive nested atop it,
and so on.

def generate(score, notes, levels, level, time, duration, key, velocity):
localLevel = level
localTime = time
localPan = ((float(localLevel) / float(levels)) - 1.0) *.75
localvelocity = velocity
for note in notes:
localbDuration = note[®] * duration
localKey = key + note[1]
localvelocity = localvelocity - (note[2] * 0.35)

print 'Adding note: level %3d of %3d time %7.3f duration %7.3f key %3d
velocity %3d pan %7.3f' % ((localLevel + 1), levels, localTime, localbDuration,
localKey, localVelocity, localPan)

score.append(localTime, localDuration, 144.0, locallLevel + 1, localKey,
localvelocity, 0, localPan)

if locallLevel > 0:

generate(score, notes, levels, (localLevel - 1), localTime,
localDuration, localKey, localVelocity)

localTime = localTime + localDuration

def normalize(notes, dimension):

print 'Normalize dimension', dimension

total = 0.0

for note in notes:
total = total + note[dimension]

factor = 1.0 / total

for note in notes:
note[dimension] = note[dimension] * factor
print note[dimension]

generator = [
[1.500, 3, 1],
[1.250, 9, 2],
[1.000, 11, 3],
[1.375, 4, 1],
1

normalize(generator, 0)

scoreNode = CsoundAC.ScoreNode()

scoreNodeScore = scoreNode.getScore()
model.addChild(scoreNode)

generate(scoreNodeScore, generator, 4, 4, 0, 150, 30, 75)

Create an arrangement, placing more sustained sounds in the lower, long-
lasting notes and more percussive sounds in the higher, shorter notes:

print 'CREATING CSOUND ARRANGEMENT...'
print

model.setCsoundOrchestra(csoundOrchestra)
model.setCsoundScoreHeader (csoundScoreHeader)

oldinsno, newinso, level (+-dB), pan (-1.0 through +1.0)
model.arrange(1, 61)
model.arrange(2, 7))
model.arrange(3, 59)
model.arrange(4, 12)
model.arrange(5, 12)

model.setCsoundCommand(csoundCommand)
Rendering the Piece

You can find a pre-written version of the piece as
MusicProjects/05_Koch/koch.py. You can run the piece either from the
command line, or using IDLE, which comes with Python, or from a text editor
such as SciTE as previously discussed, or from the Windows console.

The piece must be run from the directory containing it, so that the relative
paths used to access the SoundFonts and included Python modules will all work.
The piece should print out messages about what it is doing and terminate,
leaving a soundfile player running and ready to play koch.py.wav.

Try changing the generator one element at a time, to see how such changes,
thanks to recursion, produce global effects throughout the generated score. Also
try adding and removing elements from the generator.

Terry Riley and Cellular Accretion

From the late 1960s through the 1980s the minimalist school of composition
was very influential. Although generally speaking the minimalists were not
computer musicians, their compositional approach was certainly algorithmic, as
indicated by their frequent use of the term “process music,” which implies that
one may compose not a piece, but a process for making a piece, so that when the
process is performed, the result is music.

One of the commonest techniques in minimalism is the use of independent
motivic cells. These are constructed so that they can be played together in
various combinations. The process often involves playing sequences of cells in
difference voices such that they overlap canonically. Frequently the canon is not
symmetrical, but one voice repeats in a period a beat or so longer than another
other voice, so that the offset of the canon shifts as each period repeats. This
could be called an overlap or differential canon.

There are various ways of determining the sequence of cells, the number of
repeats, the amount of shift, and so on, ranging from completely predetermined,
to improvised during performance, to chosen purely by chance.

Terry Riley's In C was a formative piece in this movement. It consists of 53
cells of varying lengths with an eighth-note beat. All 53 cells are assigned to a
group of players. Each player is instructed to play through all the cells in
sequence and in meter, but to play each cell as many times as desired before
moving on to the next. A piano keeps the eighth-note beat with its two top C's
throughout the piece. Thus, the actual combinations of cells are completely
unpredictable and form a vast field of more or less subtle variations on a theme.

Copyright forbids reproducing this piece literally in a CsoundAC program,
but the basic idea is easy and rewarding to reproduce. Playing a sequence of cells
with varying randomly chosen numbers of repeats is quite easy to program, and
harks back to the musical dice game. Perhaps the algorithm can never reproduce
the full effect of Riley's original piece, because that depends on human
performers who listen to each other as they play and keep a more flexible style of
time. On the other hand, the algorithm has no trouble at all keeping perfect time
and playing as fast and as precisely as you like.

Generating the Score

Be that as it may, let us produce a piece similar to In C, except using the
measures of the musical dice game as raw material for the cells, as follows:

1. Copy the entire minuet table from the musical dice game into the script,
and create a function to read a measure from the minuet table into a cell.

print 'CREATING MUSIC MODEL...'
print

minuetTable = {}

minuetTable[2] = { 1: 96, 2: 22, 3:141, 4: 41, 5:105, 6:122, 7: 11, 8: 30,
9: 70, 10:121, 11: 26, 12: 9, 13:112, 14: 49, 15:109, 16: 14}

minuetTable[3] = { 1: 32, 2: 6, 3:128, 4: 63, 5:146, 6: 46, 7:134, 8: 81,
9:117, 10: 39, 11:126, 12: 56, 13:174, 14: 18, 15:116, 16: 83}

minuetTable[4] = { 1: 69, 2: 95, 3:158, 4: 13, 5:153, 6: 55, 7:110, 8: 24,
9: 66, 10:139, 11: 15, 12:132, 13: 73, 14: 58, 15:145, 16: 79}

minuetTable[5] = { 1: 40, 2: 17, 3:113, 4: 85, 5:161, 6: 2, 7:159, 8:100,
9: 90, 10:176, 11: 7, 12: 34, 13: 67, 14:160, 15: 52, 16:170}

minuetTable[6] = { 1:148, 2: 74, 3:163, 4: 45, 5: 80, 6: 97, 7: 36, 8:107,
9: 25, 10:143, 11: 64, 12:125, 13: 76, 14:136, 15: 1, 16: 93}

minuetTable[7] = { 1:104, 2:157, 3: 27, 4:167, 5:154, 6: 68, 7:118, 8: 91,
9:138, 10: 71, 11:150, 12: 29, 13:101, 14:162, 15: 23, 16:151}

minuetTable[8] = { 1:152, 2: 60, 3:171, 4: 53, 5: 99, 6:133, 7: 21, 8:127,
9: 16, 10:155, 11: 57, 12:175, 13: 43, 14:168, 15: 89, 16:172}

minuetTable[9] = { 1:119, 2: 84, 3:114, 4: 50, 5:140, 6: 86, 7:169, 8: 94,
9:120, 10: 88, 11: 48, 12:166, 13: 51, 14:115, 15: 72, 16:111}

minuetTable[10] = { 1: 98, 2:142, 3: 42, 4:156, 5: 75, 6:129, 7: 62, 8:123,
9: 65, 10: 77, 11: 19, 12: 82, 13:137, 14: 38, 15:149, 16: 8}

minuetTable[11] = { 1: 3, 2: 87, 3:165, 4: 61, 5:135, 6: 47, 7:147, 8: 33,
9:102, 10: 4, 11: 31, 12:164, 13:144, 14: 59, 15:173, 16: 78}

minuetTable[12] = { 1: 54, 2:130, 3: 10, 4:103, 5: 28, 6: 37, 7:106, 8: 5,
9: 35, 10: 20, 11:108, 12: 92, 13: 12, 14:124, 15: 44, 16:131}

def readMeasure(number):
scoreNode = CsoundAC.ScoreNode()
scoreNode.thisown = @
filename = 'M' + str(number) + '.mid'
print 'Reading "%s"' % (filename)
scoreNode.getScore().load(filename)
return scoreNode

Define a function to build a track that takes a sequence, a channel or
instrument number, a bass pitch, and a stereo pan as arguments. The
function can use a time accumulator to keep track of time as the sequence
is built. For each measure of the minuet table from 1 through 16, for row
of the table from 2 through 6, pick a number of repeats from 1 through 13
at random and repeat the measure that number of times. Put each
measure into a Rescale node and position it at the proper time,
instrument number, pitch, loudness, and pan. Don't forget to set
thisown=0 to keep Python from destroying the Rescale nodes. If you
want a longer piece, you can use all the rows in the minuet table up

through 12.
def buildTrack(sequence, channel, bass):
print 'Building track for channel %3d bass %3d...' % (channel, bass)

cumulativeTime = 0.0
for i in xrange(1, 16):
for j in xrange(2, 6):
repeatCount = 1 + int(random.random() * 12)
for k in xrange(repeatCount):
measure = readMeasure(minuetTable[j][i])
duration = 1.5
rescale = CsoundAC.Rescale()
rescale.setRescale(CsoundAC.Event.TIME, 1, 0, cumulativeTime, 0)
rescale.setRescale(CsoundAC.Event.INSTRUMENT, 1, O, channel, 0)
rescale.setRescale(CsoundAC.Event.KEY, 1, 0, bass, 0)
rescale.thisown = 0
rescale.addChild(measure)

print 'Repeat %4d of %4d at %8.3f with %3d notes of duration
%7.3fF..." %(k + 1, repeatCount, cumulativeTime, len(measure.getScore()), duration)

sequence.addChild(rescale)
cumulativeTime = cumulativeTime + duration

Use another Rescale node to hold the sequence of measures. Conform
the pitches in the sequence to a specific key or chord (here, the Bb major
scale). Then call the track-building function a number of times with
different instrument numbers, bass notes, and pans to separate out the
voices. Reseed the random number generator so a different sequence is
generated for each performance.

sequence = CsoundAC.Rescale()
model.addChild(sequence)
model.setConformPitches(True)
sequence.setRescale(CsoundAC.Event.KEY,

[

, 34, 66)
, 50, 12)

sequence.setRescale(CsoundAC.Event.PITCHES, 1, 1,
CsoundAC.Conversions_nameToM("Ab major"), 0)

sequence.setRescale(CsoundAC.Event.VELOCITY,

Y
Y

sequence.setRescale(CsoundAC.Event.INSTRUMENT, 1, 1, 0, 5)
sequence.setRescale(CsoundAC.Event.TIME, 1, 1, 0, 700)
sequence.setRescale(CsoundAC.Event .DURATION, 1, 1, 1.0, 3.0)

buildTrack(sequence, 1, 36)
buildTrack(sequence, 2, 48)
buildTrack(sequence, 3, 36)
buildTrack(sequence, 4, 48)
buildTrack(sequence, 5, 60)
model.setCppSound(csound)
random.seed()

This kind of piece works well with percussive, sampled sounds. In the
Python file, define a Csound orchestra that creates an arrangement of
grand piano, marimba, Rhodes electric piano, tubular bell, and
harpsichord using SoundFonts.

print 'CREATING CSOUND ARRANGEMENT...'
print

model.setCsoundOrchestra(csoundOrchestra)
model.setCsoundScoreHeader (csoundScoreHeader)

oldinsno, newinso, level (+-dB), pan (-1.0 through +1.0)
panIncrement = (.875 * 2.0) / 5.0

pan = -.875

model.arrange(O, 8, 0.0, pan)

pan = pan + panIncrement
model.arrange(1, 20, 0.0, pan)
pan = pan + panIncrement
model.arrange(2, 51, 6.0, pan)
pan = pan + panIncrement
model.arrange(3, 14, 3.0, pan)
pan = pan + panIncrement
model.arrange(4, 7, 0.0, pan)
pan = pan + panIncrement
model.arrange(5, 9, 0.0, pan)

model.setCsoundCommand(csoundCommand)
Rendering the Piece

You can find a pre-written version of the piece as
MusicProjects\01_DiceGame\cellular.py. You can run the piece either
from the command line, or using IDLE, which comes with Python, or from a text
editor such as SciTE as previously discussed, or from the Windows console.

The piece must be run from the directory containing it, so that the relative
paths used to access the SoundFonts used by the Csound instruments and any
included Python modules will all work. The piece should print out messages
about what it is doing and terminate, leaving a soundfile player running and
ready to play cellular.py.wav.

Experiment with different durations for the measures, ranges, choices of
instruments, and especially tempos to develop a pleasing texture.

Afterword

Let's go back to the beginning of this section and dig a little more deeply into
it. Computability is a metaphysical question: Is an entity definable, knowable,
finite, or not? — So, any question concerning the computability of music is a
question of the metaphysics of music.

My considerations are grounded in several obvious and unassailable facts,
from which far-reaching inferences can be drawn.

In the first place, works of music are physical phenomena — sounds. Each
work of music is a sound of finite tessitura, dynamic range, and duration, which
persists without gaps until it ends. Human hearing, too, has limited resolution.
Therefore, each work of music can be considered to be completely represented by
a digital recording of sufficient bandwidth: a certain finite series of Os and 1s. Or
again, a work of music is a sequence of finite complexity. So of course all such
sequences are computable, though not necessarily in a reasonable period of time.

But works of music have no meaning unless they are heard, and hearing
music is an inward, subjective experience. It would be a mistake to suppose that
the experience of music is not caused by the physical sound, yet it would equally
be a mistake to suppose that the physical sound has any meaning without the
experience of hearing it. Forgetting the physical causation of music leads to the
error of cultural relativism sometimes found in postmodernism, and forgetting

the inward hearing of music leads to the error of objectifying music typical of
scientism.

Now although any given work of music is a finite object, the art of music
consists of a sequence of such works, each distinct from all others.
Mathematically speaking, this series could continue indefinitely. The art of music
can thus be considered to be an infinite series of 0Os and 1s.

In other words, considered in the concrete, as a completed series, from the
viewpoint of God if you will, the art of music is a series of countably infinite
length and countably infinite complexity. But considered in the abstract, as an
uncompleted series, from the viewpoint of creatures if you will, the art of music
is an infinite set of possible series, each of countably infinite length. This set of possible
series can be diagonalized (exactly as in the halting theorem) to prove that it is of
uncountable infinity and uncountable complexity. Since the series has not been
completed and the art of music has not been finished, the reality of our situation is

that the art of music is effectively uncomputable.

The most important implication of this, for us, is that it would be absurd to
hope for computers to generate the art of music as a whole. But as I have tried to
show, they can be very useful indeed in computing works of music.

The field of algorithmic composition, at least in its computer-assisted form, is
only 50 years old. Yet I hope this section has demonstrated that algorithmic
composition already has more than one string to its lyre. There are styles of
algorithm, just as there are styles of song. I believe that this lyre is young, and
has only just begun to play music that will sound ever more sweet and strange.

References

Agon, C. A,, Assayag, G., & Bresson,]. (2007). OpenMusic: a Visual Programming
Language. Retrieved from
http:/ /recherche.ircam.fr/equipes/repmus/OpenMusic/

Apple Developer Connection. (2007). Core Audio Technologies. Retrieved from
Developer Connection: http://developer.apple.com/audio/coreaudio.html

Apple. (2007). Logic Pro 8. Retrieved from Apple:
http:/ /www.apple.com/logicstudio/logicpro/

Ariza, C. (2007). Algorithmic.net. Retrieved from flexatone:
http:/ /www flexatone.net/algoNet/

Ariza, C. (2007). athenaCL. Retrieved from
http:/ /www flexatone.net/athena.html

Audacity. (2007). The Free, Cross-Platform Sound Editor. Retrieved from Audacity:
http:/ /audacity.sourceforge.net/

AudioNerdz. (2007). AudioNerdz. Retrieved from AudioNerdz:
http:/ /www.audionerdz.com/

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic
Programming ~ An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. San Francisco: Morgan Kaufman Publishers.

Bencina, R. (2007). PortAudio - portable cross-platform Audio API. Retrieved from
PortAudio: http:/ /www.portaudio.com/

Bentley, P. ., & Corne, D. W. (2002). Creative Evolutionary Systems. San Francisco:
Morgan Kaufman Publishers.

boost.org. (2007). Welcome to boost.org. Retrieved from boost C++ Libraries:
http:/ /www.boost.org/

Burks, P. (2007). Computer Music Links. Retrieved from SoftSynth:
http://www.softsynth.com/links /

Burns, K. H. (1993). The History and Development of Algorithms in Music
Composition, 1957-1993. Ball State University.

Buzzwiki. (2007). Retrieved from Buzzwiki:
http:/ /wiki.buzzmusic.de/index.php /Main_Page

C++ Standards Committee. (2007). Retrieved from JTC1/SC22/WG21 - The C++
Standards Committee: http:/ /www.open-std.org/jtcl /sc22/wg21/

Cage, J. (1961). Atlas Eclipticalis. London: Edition Peters.
Cage,]., & Hiller, L. (1969). HPSCHD. London: Edition Peters.

Cakewalk. (2007). Introducing: Sonar 7 Producer Edition. Retrieved from Cakewalk:
http:/ /www.cakewalk.com /Products/SONAR /default.asp

Cakewalk. (2007a). Project 5. Retrieved from Project 5:
http:/ /www.project5.com/

Centre de Donnees astronomiques de Strasbourg. (2006). Astronomer’s Bazaar.
Retrieved from The CDS Service for astronomical Catalogues:
http:/ /cdsweb.u-strasbg.fr/Cats.html

Chaitin, G. J. (1998). The Limits of Mathematics: A Course on Information Theory and
the Limits of Reasoning. Singapore: Springer-Verlag.

Chuang, J. (2007). Mozart's Musikalisches Wiirfelspiel. Retrieved from
http:/ /sunsite.univie.ac.at/Mozart/dice/

Cook, P. R. (2002). Real Sound Synthesis for Interactive Applications. Natick,
Massachusetts: A. K. Peters.

Cook, P. R., & Scavone, G. K. (2007). The Synthesis ToolKit in C++ (STK). Retrieved
from The Synthesis ToolKit in C++ (STK):
http:/ /ccrma.stanford.edu/software/stk/

Creative. (2007). Developer Central. Retrieved from Creative USA:
http:/ /developer.creative.com/landing.asp?cat=2&sbcat=34&top=51

Dannenberg, R. B. (2007). Nyquist, A Sound Synthesis and Composition Language.
Retrieved from Nyquist, A Sound Synthesis and Composition Language:
http://www.cs.cmu.edu/~music/nyquist/

Digidesign. (2007). Digidesign. Retrieved from Digidesign:
http:/ /www.digidesign.com/

Dodge, C. (1998). Profile: A Musical Fractal. Computer Music Journal , 12 (3), 10-14.

Dodge, C. (Composer). (1987). Viola Elegy. On Any Resemblance is Purely
Coincidental [CD]. New Albion Records.

Embree, P. M., & Danieli, D. (1999). C++Algorithms for Digital Signal Processing.
Upper Saddle River, New Jersey: Prentice Hall.

Fishman, S. (1998). Software Development: A Legal Guide, 2nd Edition. Berkeley:
Nolo Press.

Fitz, K., & Haken, L. (2007). Loris Software for Sound Modeling, Morphing, and
Manipulation. Retrieved from Loris: http:/ /www.cerlsoundgroup.org/Loris/

FLTK. (2007). FLTK - Fast Light Tool Kit. Retrieved from FLTK:
http:/ /www fltk.org/

Foley, J. D., van Dam, A., Feiner, S. K., & Hughes,]J. F. (1997). Computer
Graphics: Principles and Practice, Second Edition in C. Reading,
Massachusetts: Addison-Wesley.

Free Software Foundation. (2007). Free Software Foundation. Retrieved from
http:/ /www fsf.org/

Future Publishing Limited. (2007). Computer Music Make Music Now! Retrieved
from Computer Music: http:/ /www.computermusic.co.uk/

Gogins, M. (2007). Csound on SourceForge. Retrieved from
http://csound.sourceforge.net/

Gogins, M. (1998). Music Graphs for Algorithmic Composition and Synthesis
with an Extensible Implementation in Java. Proceedings of the 1998
International Computer Music Conference (pp. 369-376). San Francisco:
International Computer Music Association.

Gogins, M. (2006). Score Generation in Voice-Leading and Chord Spaces.
Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association.

Grabit, Y. (2007). The Yvan Grabit Developer Resource. Retrieved from The Yvan
Grabit Developer Resource:
http:/ /ygrabit.steinberg.de/~ygrabit/public_html/index.html

Green Oak. (2007). Crystal Soft Synth. Retrieved from Crystal Soft Synth.

Hammer, T. (2007). HammerSound. Retrieved from HammerSound:
http:/ /www.hammersound.net/

Hanappe, P., & Green, J. (2007). Fluidsynth. Retrieved from
http:/ /fluidsynth.resonance.org/trac

Harmony-Central. (2007). Home. Retrieved from Harmony Central:
http:/ /www.harmony-central.com/

Heckmann, U., & de Jong, B. (2007). VST Source Code Archive. Retrieved from VST
Source Code Archive: http://www.u-he.com/vstsource/

Hiller, L. A., & Isaacson, L. M. (1959a). Illiac Suite for String Quartet. New York:
New Music Editions.

Hiller, L., & Isaacson, L. M. (1959). Experimental Music: Composition with an
Electronic Computer. New York: McGraw-Hill.

Hitsquad. (2007). Shareware Music Machine. Retrieved from Hitsquad Musician
Network: http://www hitsquad.com/smm/

Holm, F. (1992, Spring). Understanding FM Implementations: A Call for
Common Standards. Computer Music Journal , 16 (1), pp. 34-42.

Home. (2007). Retrieved from FL Studio : http://www.flstudio.com

Hrabovsky, Leonid. (1977). 1448 Concerto Misterioso: The Music of Leonid
Hrabousky (b. 1935), Vol. 1. Las Vegas, Nevada: TNC Recordings.

Intel. (2007). Intel Compilers. Retrieved from Intel:
http://www.intel.com /cd /software/products/asmo-
na/eng/compilers/284132.htm

Jacob, Bruce. (Retrieved August 11, 2009). VARIATIONS: Algorithmic Composition
for Acoustic Instruments.

http://www.ece.umd.edu/~blj/algorithmic composition.

Jourdan, T. (2004). Kandid: A Genetic Art Project. Retrieved from
http:/ /kandid.sourceforge.net

Kleene, S. C. (1967). Mathematical Logic. New York: Wiley.

KristalLabs Software Ltd. (2007). Kristal Audio Engine. Retrieved from Kristal
Audio Engine: http:/ /www kreatives.org/kristal /

Lassfolk, K., & Halmkrona, J. (2006). Sound Processing Kit Home Page. Retrieved
from http:/ /www.music.helsinki.fi/research/spkit/

linuxaudio.org. (2007). apps. Retrieved from linuxaudio.org;:
http://apps.linuxaudio.org/

Lopo, E. d. (2007). libsndfile. Retrieved from Ibsndfile: http:/ /www.mega-
nerd.com/libsndfile/

Loy, G. (1990). Composing with computers: a survey of some compositional
formalisms and programming. In M. Mathews, &]. Pierce, Current Directions
in Computer Music. Cambridge, Massachusetts: The MIT Press.

http://www.flstudio.com/
http://www.ece.umd.edu/~blj/algorithmic_composition
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284132.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284132.htm

Maldonado, G. (2007). Home Page of Gabriel Maldonado. Retrieved from Gabriel
Maldonado: http:/ /web.tiscali.it/G-Maldonado/

Mann, A. (1971 [1943]). The Study of Counterpoint from Johann Joseph Fux's Gradus
ad Parnassum. New York: W. W. Norton.

Mark of the Unicorn. (2007). Digital Performer Overview . Retrieved from MOTU:
http://www.motu.com/products/software/dp

Mathews, M. V. (1969). The Technology of Computer Music. Cambridge,
Massachusetts: The MIT Press.

Max/MSP. (2007). Retrieved 2007, from 74:
http:/ /www.cycling74.com/products/maxmsp

McCartney, J. (2007). SuperCollide: real-time audio synthesis and algorithmic
composition. Retrieved from http:/ /supercollider.sourceforge.net/

Microsoft. (2007). Home. Retrieved from Microsoft Developer Network:
http:/ /msdn2.microsoft.com/en-us/default.aspx

MSDN. (2007). DirectX Resource Center. Retrieved from MSDN:
http:/ /msdn2.microsoft.com/en-us/directx/default.aspx

Muse Research. (2007). Audio Plugin News. Retrieved from KVR Audio:
http:/ /www kvraudio.com/

Music Technology Group of Pompeu Fabra University. (2007). News. Retrieved
from CLAM: http://clam.iua.upf.edu/

Native Instruments. (2007). Reaktor 5 - The Future of Sound. Retrieved from NI:
http://www.nativeinstruments.de/index.php?id=reaktor5

Nierhaus, Gerard. (2009). Algorithmic Composition: Paradigms of Automated
Music Generation. New York: SpringerWien.

Peitgen, H.-O., Jurgens, H., & Saupe, D. (1992). Chaos and Fractals: New Frontiers
of Science. New York: Springer-Verlag.

Persistence of Vision Pty. Ltd. (2007). POV-Ray - The Persistence of Vision
Raytracer. Retrieved from http://www.povray.org/

Pope, S. (2007). Retrieved from The CREATE Signal Library (CSL) Project:
http:/ /fastlabinc.com/CSL/

Pouet. (2007). Your online demoscene resource. Retrieved from Pouet:
http:/ /www.pouet.net/

Propellerhead Software. (2007). Propellerhead News. Retrieved from
Propellerhead: http://www.propellerheads.se/

-psycledelics-. (2007). Psycle. Retrieved from Psycle:
http:/ /psycle.pastnotecut.org/portal.php

Puckette, M. (2007). About Pure Data. Retrieved 2007, from pd~:
http:/ /puredata.info/

Puxeddu, M. U. (2004). OMDE/PMask. Retrieved from
http:/ /pythonsound.sourceforge.net

Python Software Foundation. (2007). Python Programming Language -- Official
Website. Retrieved from Python Programming Language -- Official Website:
http://www.python.org/

Roads, C. (1996). The Computer Music Tutorial. Cambridge, Massachusetts: The
MIT Press.

Sapp, C. S. (2007). Sig++: Musical Signal Processing in C++. Retrieved from http://
sig.sapp.org/

savannah. (2007). Savannah. Retrieved from Savannah:
http:/ /savannah.gnu.org/

scene.org. (2007). Retrieved from scene.org: http:/ /www.scene.org/

Schottstaedt, B. (1984). Automatic Species Counterpoint. Center for Computer
Research in Music and Acoustics, Stanford, California.

SciTE: A Free Text Editor for Win32 and X. (2007). Retrieved from
http:/ /www.scintilla.org/SciTE.html

Seppénen, J., & Kananoja, S. (2007). Sonic Flow. Retrieved from Sonic Flow:
http:/ /sonicflow.sourceforge.net/

Silicon Graphics Incorporated. (2007). Standard Template Library Programmer’s
Guide. Retrieved from http:/ /www.sgi.com/tech/stl/

Smith, J. O. (2007). Julius Orion Smith I1II Home Page. Retrieved from
http:/ /ccrma.stanford.edu/~jos/

solipse. (2007). noise. Retrieved from
http:/ /solipse.free.fr/site/index_csound.html

Sorensen, A., & Brown, A. (2007). jMusic. Retrieved from jMusic:
http:/ /jmusic.ci.qut.edu.au/

Sound on Sound Ltd. (2007). Sound on Sound. Retrieved from Sound on Sound:
http:/ /www.soundonsound.com/

sourceforge.net. (2007). sourceforge.net. Retrieved from sourceforge.net:
http:/ /sourceforge.net/

Steiglitz, K. (1996). A Digital Signal Processing Primer: With Applications to Digital
Audio and Computer Music. Upper Saddle River, New Jersey: Prentice-Hall.

Steinberg Media Technologies GmbH. (2007). Retrieved from Steinberg: http://
www.steinberg.net

Steinberg Media Technologies GmbH. (2007a). 3rd Party Developers. Retrieved
from Steinberg: http:/ /www.steinberg.net/324_1.html

SuperCollider swiki. (2007). Retrieved from http:/ /swiki.hfbk-hamburg.de:8888/
MusicTechnology /6

Synapse Audio Software. (2007). Home. Retrieved from Synapse Audio Software:
http:/ /www.synapse-audio.com/

Taips, R. (2007). Rumpelrausch Tiips. Retrieved from Rumpelrausch Taips: http://
zr-3.sourceforge.net/

Taube, H. K. (2004). Notes from the Metalevel: An Introduction to Computer
Composition. Oxford, England: Routledge.

Taube, R. (2007). Common Music. Retrieved from Common Music:
http:/ /commonmusic.sourceforge.net/doc/cm.html

The GIMP Team. (2007). GNU Image Manipulation Program. Retrieved from GIMP:
http:/ /www.gimp.org/

Turing, A. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society , 42 (1),
230-265.

Tymoczko, D. (2006). The Geometry of Musical Chords. Science , 313, 72-74.

Vercoe, B. (2007). Csound on SourceForge. Retrieved from Csound on SourceForge:
http:/ /csound.sourceforge.net/

Ward-Bergeman, M.]. (2007). Csound Compositions. Retrieved from cSounds.com:
http:/ /www.csounds.com/compositions/

Wavosaur Team. (2007). Audio Editor with VST Support. Retrieved from
Wavosaur: http:/ /www.wavosaur.com/

WebRing. (2007). Cubase. Retrieved from WebRing: http:/ /d.webring.com/hub?
ring=cubase&list

www.mingw.org. (2007). MinGW - Home. Retrieved from MinGW - Minimalist
GNU for Windows: http:/ /www.mingw.org/

wxWidgets. (2007). wxWidgets Cross-Platform GUI Library. Retrieved from
wxWidgets Cross-Platform GUI Library: http:/ /www.wxwidgets.org/

Yi, S. (2007). blue. Retrieved from Steven Yi:
http://www.csounds.com/stevenyi/blue/

	Introduction
	What is Algorithmic Composition?
	Facilities for Algorithmic Composition
	athenaCL
	blue
	Common Music
	JMusic
	OpenMusic
	SuperCollider
	Csound
	The Score Language
	The Orchestra Language
	CsoundAC as an Environment for Algorithmic Composition
	Music Graphs

	Getting Started with Csound in Python
	Embedding Csound in Python
	Generating Scores in Python
	A Labor-Saving Pattern for Algorithmic Composition

	An Historical Tutorial in Algorithmic Composition
	Mozart (?) and The Musical Dice Game
	The Original Musikalisches Wuerfelspiel
	Rendering the Piece
	Abstracting the Algorithm

	Lejaren Hiller, Bill Schottstaedt, and Counterpoint Generation
	Generating the Score
	Rendering the Piece

	Cage and Transposition from Nature
	Generating the Score
	Rendering the Piece

	LaMonte Young and Just Intonation
	Orchestra, Score, and Command
	Real-time Control
	User Interface
	Implementing the Callbacks
	Rendering the Piece

	Charles Dodge and Fractal Music
	Generating the Score
	Rendering the Piece

	Terry Riley and Cellular Accretion
	Generating the Score
	Rendering the Piece

	Afterword
	References

