НЕЙРОННЫЕ СЕТИ
Искусственные нейронные сети (ИНС) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма.
Нейронные сети практически не используются при решении задач алгоритмической музыки, чаще для решения проблем распознавания образов, однако мы все–таки кратко опишем данную область, как и единственную математическую модель для генерации музыки, созданную на основе нейронов.
Мозг состоит из очень большого числа (приблизительно 10,000,000,000) нейронов, соединенных многочисленными связями. Нейроны — это специальные клетки, способные распространять электрохимические сигналы. Нейрон обладает разветвленной структурой ввода информации (дендритами), ядрами и разветвляющимся выходом (аксоном). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону, и через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).
Интенсивность сигнала, получаемого нейроном (а, следовательно, и возможность его активации) сильно зависит от активности синапсов. Каждый синапс имеет протяженность и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, канадский нейропсихолог Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях "силы" синаптических связей.
Нейронные сети являются альтернативным подходом к традиционной вычислительной теории, основанной по большей части на фон Неймановской архитектуре. Вместо процессора и памяти, в нейронных сетях применяется распределенная система связанных единиц, не использующих запрограммированные правила, переведенные в инструкции. Главным их преимуществом является возможность обучаться на специальных примерах.

модель биологического нейрона

Схема простой нейронной сети. 1 — входные нейроны, 2 — скрытые нейроны, 3 — выходной нейрон.

персептрон: модель искусственного нейрона

Передаточная функция определяет выходное значение нейрона на основании входящих значений.
Первые подходы в нейронных сетях с одним слоем нейронов, налагали серьезные ограничения на их возможности вплоть до начала 80–х, когда впервые были описаны многослойные нейронные сети. Входящий слой служит в этой сети в качестве глаз и ушей человека, а выходной дает результаты. Но между этими слоями может содержаться несколько скрытых, состоящих из узлов, не имеющих внешних соединений.
В музыкальной генерации нейронные сети практически не используются в чистом виде, чаще в качестве промежуточного или вспомогательного звена, например, как оценщик фитнесс–функции в генетических алгоритмах. В качестве примера использования ИНН можно привести подход американского ученого-когнитивиста Питера Тодда для генерации одноголосых мелодий.
Он описал рекуррентную сеть Джордана с тремя слоями. Выходные значения сети — ноты с ассоциированной информацией о высоте и продолжительности. Плановые узлы - это нейроны, определяющие мелодию, которая обрабатывается в данный момент, контекстные узлы содержат ноты, которые были сгенерированы ранее. Выходные узлы генерируют текущие ноты, каждому нейрону на выходе назначен контекстный нейрон. Нейроны скрытого слоя соединены с плановыми и контекстными узлами, точно так же, как и с выходным слоем, набором обученных, весовых соединений.